Sequential Monte Carlo Learning for Time Series Structure Discovery

Feras Saad
Vikash Mansinghka
Proceedings of the 40th International Conference on Machine Learning (2023), pp. 29473-29489

Abstract

This paper presents a new approach to automatically discovering accurate
models of complex time series data. Working within a Bayesian nonparametric
prior over a symbolic space of Gaussian process time series models, we
present a novel structure learning algorithm that integrates sequential
Monte Carlo (SMC) and involutive MCMC for highly effective posterior
inference. Our method can be used both in "online'' settings, where new
data is incorporated sequentially in time, and in "offline'' settings, by
using nested subsets of historical data to anneal the posterior. Empirical
measurements on a variety of real-world time series show that our method
can deliver 10x--100x runtime speedups over previous MCMC and greedy-search
structure learning algorithms for the same model family. We use our method
to perform the first large-scale evaluation of Gaussian process time series
structure learning on a widely used benchmark of 1,428 monthly econometric
datasets, showing that our method discovers sensible models that deliver
more accurate point forecasts and interval forecasts over multiple horizons
as compared to prominent statistical and neural baselines that struggle on
this challenging data.

Research Areas