Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10390 publications
    Participatory AI Considerations for Advancing Racial Health Equity
    Andrea G. Parker
    Jatin Alla
    Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI) (2025) (to appear)
    Preview abstract Health-related artificial intelligence (health AI) systems are being rapidly created, largely without input from racially minoritized communities who experience persistent health inequities and stand to be negatively affected if these systems are poorly designed. Addressing this problematic trend, we critically review prior work focused on the participatory design of health AI innovations (participatory AI research), surfacing eight gaps in this work that inhibit racial health equity and provide strategies for addressing these gaps. Our strategies emphasize that “participation” in design must go beyond typical focus areas of data collection, annotation, and application co-design, to also include co-generating overarching health AI agendas and policies. Further, participatory AI methods must prioritize community-centered design that supports collaborative learning around health equity and AI, addresses root causes of inequity and AI stakeholder power dynamics, centers relationalism and emotion, supports flourishing, and facilitates longitudinal design. These strategies will help catalyze research that advances racial health equity. View details
    The Cost of Consistency: Submodular Maximization with Constant Recourse
    Paul Duetting
    Federico Fusco
    Ashkan Norouzi Fard
    Ola Svensson
    Proceedings of the 57th Annual ACM Symposium on Theory of Computing (2025), 1406–1417
    Preview abstract In this work, we study online submodular maximization and how the requirement of maintaining a stable solution impacts the approximation. In particular, we seek bounds on the best-possible approximation ratio that is attainable when the algorithm is allowed to make, at most, a constant number of updates per step. We show a tight information-theoretic bound of $2/3$ for general monotone submodular functions and an improved (also tight) bound of $3/4$ for coverage functions. Since both these bounds are attained by non poly-time algorithms, we also give a poly-time randomized algorithm that achieves a $0.51$-approximation. Combined with an information-theoretic hardness of $1/2$ for deterministic algorithms from prior work, our work thus shows a separation between deterministic and randomized algorithms, both information theoretically and for poly-time algorithms. View details
    Online-EYE: Multimodal Implicit Eye Tracking Calibration for XR
    Baosheng James Hou
    Lucy Abramyan
    Prasanthi Gurumurthy
    Khushman Patel
    Haley Adams
    Andrea Colaco
    Ken Pfeuffer
    Hans Gellersen
    Karan Ahuja
    2025
    Preview abstract Unlike other inputs for VR that work out of the box, eye tracking typically requires custom calibration per user or session. We present a multimodal inputs approach for implicit calibration of eye tracker in VR, leveraging UI interaction for continuous, background calibration. Our method analyzes gaze data alongside controller interaction with UI elements, and employing ML techniques it continuously refines the calibration matrix without interrupting users from their current tasks. Potentially eliminating the need for explicit calibration. We demonstrate the accuracy and effectiveness of this implicit approach across various tasks and real time applications achieving comparable eye tracking accuracy to native, explicit calibration. View details
    Sufficient Context: A New Lens on Retrieval Augmented Generation Systems
    Hailey Joren
    Jianyi Zhang
    Chun-Sung Ferng
    Ankur Taly
    International Conference on Learning Representations (ICLR) (2025)
    Preview abstract Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a method to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that larger models with higher baseline performance (Gemini 1.5 Pro, GPT 4o, Claude 3.5) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, smaller models with lower baseline performance (Llama 3.1, Mistral 3, Gemma 2) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10% for Gemini, GPT, and Gemma. View details
    Neural Speech and Audio Coding
    Minje Kim
    IEEE Signal Processing Magazine, 41 (2025), pp. 85-93
    Preview abstract This paper explores the integration of model-based and data-driven approaches within the realm of neural speech and audio coding systems. It highlights the challenges posed by the subjective evaluation processes of speech and audio codecs and discusses the limitations of purely data-driven approaches, which often require inefficiently large architectures to match the performance of model-based methods. The study presents hybrid systems as a viable solution, offering significant improvements to the performance of conventional codecs through meticulously chosen design enhancements. Specifically, it introduces a neural network-based signal enhancer designed to post-process existing codecs’ output, along with the autoencoder-based end-to-end models and LPCNet—hybrid systems that combine linear predictive coding (LPC) with neural networks. Furthermore, the paper delves into predictive models operating within custom feature spaces (TF-Codec) or predefined transform domains (MDCTNet) and examines the use of psychoacoustically calibrated loss functions to train end-to-end neural audio codecs. Through these investigations, the paper demonstrates the potential of hybrid systems to advance the field of speech and audio coding by bridging the gap between traditional model-based approaches and modern data-driven techniques. View details
    Preview abstract Measuring productivity is equivalent to building a model. All models are wrong, but some are useful. Productivity models are often “worryingly selective” (wrong because of omissions). Worrying selectivity can be combated by taking a holistic approach that includes multiple measurements of multiple outcomes. Productivity models should include multiple outcomes, metrics, and methods. View details
    RemapRoute: Local Remapping of Internet Path Changes
    renata cruz teixeira
    italo cunha
    Elverton Fazzion
    Darryl Veitch
    2025
    Preview abstract Several systems rely on traceroute to track a large number of Internet paths as they change over time. Monitoring systems perform this task by remapping paths periodically or whenever a change is detected. This paper shows that such complete remapping is inefficient, because most path changes are localized to a few hops of a path. We develop RemapRoute, a tool to remap a path locally given the previously known path and a change point. RemapRoute sends targeted probes to locate and remap the often few hops that have changed. Our evaluation with trace-driven simulations and in a real deployment shows that local remapping reduces the average number of probes issued during remapping by 63% and 79%, respectively, when compared with complete remapping. At the same time, our results show that local remapping has little impact on the accuracy of inferred paths. View details
    Circadian rhythm of heart rate and activity: a cross-sectional study
    Maryam Khalid
    Logan Schneider
    Aravind Natarajan
    Conor Heneghan
    Karla Gleichauf
    Chronobiology International (2025)
    Preview abstract ABSTRACT Background: Circadian rhythms are commonly observed in a number of physiological processes. Consumer wearable devices have made it possible to obtain continuous time series data from a large number of individuals. We study circadian rhythms from measurements of heart rate, movement, and sleep, from a cohort of nearly 20,000 participants over the course of 30 days. Methods: Participation was restricted to Fitbit users of age 21 years or older residing in the United States or Canada. Participants were enrolled through a recruitment banner shown on the Fitbit App. The advertisement was shown to 531,359 Fitbit users, and 23,239 enrolled in the program. Of these, we obtained heart rate data from 19,350 participants. We obtain the underlying circadian rhythm from time series heart rate by modeling the circadian rhythm as a sum over the first two Fourier harmonics. The first Fourier harmonic accounts for the 24-hour rhythmicity, while the second harmonic accounts for non-sinusoidal perturbations. Findings: We observe a circadian rhythm in both heart rate and acceleration. From the diurnal modulation, we obtain the following circadian parameters: (i) amplitude of modulation, (ii) bathyphase, (iii) acrophase, (iv) non-sinusoidal fraction, and (v) fraction of day when the heart rate is greater than the mean. The amplitude, bathyphase, and acrophase depend on sex, and decrease with age. The waketime on average, follows the bathyphase by 2.4 hours. In most individuals, the circadian rhythm of heart rate lags the circadian rhythm of activity. Interpretation: Circadian metrics for heart rate and activity can be reliably obtained from commercially available wearable devices. Distributions of circadian metrics can be valuable tools for individual-level interpretation. View details
    Preview abstract This paper adopts a Usage-Based Construction Grammar perspective to compare human- and AI-generated language, focusing on Verb-Argument Constructions (VACs) as a lens for analysis. Specifically, we examine solicited advice texts in two domains—Finance and Medicine—produced by humans and ChatGPT across different GPT models (3.5, 4, and 4o) and interfaces (3.5 Web vs. 3.5 API). Our findings reveal broad consistency in the frequency and distribution of the most common VACs across human- and AI-generated texts, though ChatGPT exhibits a slightly higher reliance on the most frequent constructions. A closer examination of the verbs occupying these constructions uncovers significant differences in the meanings conveyed, with a notable growth away from human-like language production in macro level perspectives (e.g., length) and towards humanlike verb-VAC patterns with newer models. These results underscore the potential of VACs as a powerful tool for analyzing AI-generated language and tracking its evolution over time. View details
    Snap-it, Tap-it, Splat-it: Tactile-Informed 3D Gaussian Splatting for Reconstructing Challenging Surfaces
    Mauro Comi
    Max Yang
    Jonathan Tremblay
    Valts Blukis
    Yijiong Lin
    Nathan Lepora
    Laurence Aitchison
    2025
    Preview abstract Touch and vision go hand in hand, mutually enhancing our ability to understand the world. From a research perspective, the problem of mixing touch and vision is underexplored and presents interesting challenges. To this end, we propose Tactile-Informed 3DGS, a novel approach that incorporates touch data (local depth maps) with multi-view vision data to achieve surface reconstruction and novel view synthesis. Our method optimises 3D Gaussian primitives to accurately model the object's geometry at points of contact. By creating a framework that decreases the transmittance at touch locations, we achieve a refined surface reconstruction, ensuring a uniformly smooth depth map. Touch is particularly useful when considering non-Lambertian objects (e.g. shiny or reflective surfaces) since contemporary methods tend to fail to reconstruct with fidelity specular highlights. By combining vision and tactile sensing, we achieve more accurate geometry reconstructions with fewer images than prior methods. We conduct evaluation on objects with glossy and reflective surfaces and demonstrate the effectiveness of our approach, offering significant improvements in reconstruction quality. View details
    Validation of a Deep Learning Model for Diabetic Retinopathy on Patients with Young-Onset Diabetes
    Tony Tan-Torres
    Pradeep Praveen
    Divleen Jeji
    Arthur Brant
    Xiang Yin
    Lu Yang
    Tayyeba Ali
    Ilana Traynis
    Dushyantsinh Jadeja
    Rajroshan Sawhney
    Sunny Virmani
    Pradeep Venkatesh
    Nikhil Tandon
    Ophthalmology and Therapy (2025)
    Preview abstract Introduction While many deep learning systems (DLSs) for diabetic retinopathy (DR) have been developed and validated on cohorts with an average age of 50s or older, fewer studies have examined younger individuals. This study aimed to understand DLS performance for younger individuals, who tend to display anatomic differences, such as prominent retinal sheen. This sheen can be mistaken for exudates or cotton wool spots, and potentially confound DLSs. Methods This was a prospective cross-sectional cohort study in a “Diabetes of young” clinic in India, enrolling 321 individuals between ages 18 and 45 (98.8% with type 1 diabetes). Participants had fundus photographs taken and the photos were adjudicated by experienced graders to obtain reference DR grades. We defined a younger cohort (age 18–25) and an older cohort (age 26–45) and examined differences in DLS performance between the two cohorts. The main outcome measures were sensitivity and specificity for DR. Results Eye-level sensitivity for moderate-or-worse DR was 97.6% [95% confidence interval (CI) 91.2, 98.2] for the younger cohort and 94.0% [88.8, 98.1] for the older cohort (p = 0.418 for difference). The specificity for moderate-or-worse DR significantly differed between the younger and older cohorts, 97.9% [95.9, 99.3] and 92.1% [87.6, 96.0], respectively (p = 0.008). Similar trends were observed for diabetic macular edema (DME); sensitivity was 79.0% [57.9, 93.6] for the younger cohort and 77.5% [60.8, 90.6] for the older cohort (p = 0.893), whereas specificity was 97.0% [94.5, 99.0] and 92.0% [88.2, 95.5] (p = 0.018). Retinal sheen presence (94% of images) was associated with DME presence (p < 0.0001). Image review suggested that sheen presence confounded reference DME status, increasing noise in the labels and depressing measured sensitivity. The gradability rate for both DR and DME was near-perfect (99% for both). Conclusion DLS-based DR screening performed well in younger individuals aged 18–25, with comparable sensitivity and higher specificity compared to individuals aged 26–45. Sheen presence in this cohort made identification of DME difficult for graders and depressed measured DLS sensitivity; additional studies incorporating optical coherence tomography may improve accuracy of measuring DLS DME sensitivity. View details
    Context is Key for Agent Security
    Lillian Tsai
    Eugene Bagdasaryan
    arXiv (2025)
    Preview abstract Judging the safety of an action, whether taken by a human or a system, must take into account the context in which the action takes place. For example, deleting an email from a user's mailbox may or may not be appropriate depending on the email's content, the user's goals, or even available space. Systems today that make these judgements---providing security against harmful or inappropriate actions---rely on manually-crafted policies or user confirmation for each relevant context. With the upcoming deployment of systems like generalist agents, we argue that we must rethink security designs to adapt to the scale of contexts and capabilities of these systems. As a first step, this paper explores contextual security in the domain of agents and proposes contextual security for agents (Conseca), a framework to generate just-in-time, contextual, and human-verifiable security policies. View details
    AfriMed-QA: A Pan-African Multi-Specialty Medical Question-Answering Benchmark Dataset
    Tobi Olatunji
    Abraham Toluwase Owodunni
    Charles Nimo
    Jennifer Orisakwe
    Henok Biadglign Ademtew
    Chris Fourie
    Foutse Yuehgoh
    Stephen Moore
    Mardhiyah Sanni
    Emmanuel Ayodele
    Timothy Faniran
    Bonaventure F. P. Dossou
    Fola Omofoye
    Wendy Kinara
    Tassallah Abdullahi
    Michael Best
    2025
    Preview abstract Recent advancements in large language model (LLM) performance on medical multiple-choice question (MCQ) benchmarks have stimulated significant interest from patients and healthcare providers globally. Particularly in low- and middle-income countries (LMICs) facing acute physician shortages and lack of specialists, LLMs offer a potentially scalable pathway to enhance healthcare access and reduce costs. However, LLM training data is sourced from predominantly Western text, existing benchmarks are predominantly Western-centric, limited to MCQs, and focused on a narrow range of clinical specialties, raising concerns about their applicability in the Global South, particularly across Africa where localized medical knowledge and linguistic diversity are often underrepresented. In this work, we introduce AfriMed-QA, the first large-scale multi-specialty Pan-African medical Question-Answer (QA) dataset designed to evaluate and develop equitable and effective LLMs for African healthcare. It contains 3,000 multiple-choice professional medical exam questions with answers and rationale, 1,500 short answer questions (SAQ) with long-from answers, and 5,500 consumer queries, sourced from over 60 medical schools across 15 countries, covering 32 medical specialties. We further rigorously evaluate multiple open, closed, general, and biomedical LLMs across multiple axes including accuracy, consistency, factuality, bias, potential for harm, local geographic relevance, medical reasoning, and recall. We believe this dataset provides a valuable resource for practical application of large language models in African healthcare and enhances the geographical diversity of health-LLM benchmark datasets. View details
    Preview abstract Specific quantum algorithms exist to—in theory— break elliptic curve cryptographic protocols. Implementing these algorithms requires designing quantum circuits that perform elliptic curve arithmetic. To accurately judge a cryptographic protocol’s resistance against future quantum computers, researchers figure out minimal resource-count circuits for performing these operations while still being correct. To assure the correctness of a circuit, it is integral to restore all ancilla qubits used to their original states. Failure to do so could result in decoherence of the computation’s final result. Through rigorous classical simulation and unit testing, I surfaced four inconsistencies in the state-ofthe-art quantum circuit for elliptic curve point addition where the circuit diagram states the qubits are returned in the original (|0⟩) state, but the intermediate values are not uncomputed. I provide fixes to the circuit without increasing the leading-order gate cost. View details
    Preview abstract Natural disasters, including earthquakes, wildfires and cyclones, bear a huge risk on human lives as well as infrastructure assets. An effective response to disaster depends on the ability to rapidly and efficiently assess the intensity of damage. Artificial Intelligence (AI) and Generative Artificial Intelligence (GenAI) presents a breakthrough solution, capable of combining knowledge from multiple types and sources of data, simulating realistic scenarios of disaster, and identifying emerging trends at a speed previously unimaginable. In this paper, we present a comprehensive review on the prospects of AI and GenAI in damage assessment for various natural disasters, highlighting both its strengths and limitations. We talk about its application to multimodal data such as text, image, video, and audio, and also cover major issues of data privacy, security, and ethical use of the technology during crises. The paper also recognizes the threat of Generative AI misuse, in the form of dissemination of misinformation and for adversarial attacks. Finally, we outline avenues of future research, emphasizing the need for secure, reliable, and ethical Generative AI systems for disaster management in general. We believe that this work represents the first comprehensive survey of Gen-AI techniques being used in the field of Disaster Assessment and Response. View details