Ensemble Adversarial Training: Attacks and Defenses

Dan Boneh
Florian Tramèr
Ian Goodfellow
Patrick McDaniel
ICLR (2018)

Abstract

Adversarial examples are perturbed inputs designed to fool machine learning models.
Adversarial training injects such examples into training data to increase robustness.
To scale this technique to large datasets, perturbations are crafted using
fast single-step methods that maximize a linear approximation of the model’s loss.
We show that this form of adversarial training converges to a degenerate global
minimum, wherein small curvature artifacts near the data points obfuscate a linear
approximation of the loss. The model thus learns to generate weak perturbations,
rather than defend against strong ones. As a result, we find that adversarial
training remains vulnerable to black-box attacks, where we transfer perturbations
computed on undefended models, as well as to a powerful novel single-step attack
that escapes the non-smooth vicinity of the input data via a small random step.
We further introduce Ensemble Adversarial Training, a technique that augments
training data with perturbations transferred from other models. We use ensemble
adversarial training to train ImageNet models with strong robustness to black-box
attacks. In particular, our most robust model won the first round of the NIPS 2017
competition on Defenses against Adversarial Attacks

Research Areas