Orhan Firat

Orhan Firat

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Automatic evaluation of machine translation (MT) is a critical tool driving the rapid iterative development of MT systems. While considerable progress has been made on direct estimation of quality scores, the resulting metrics lack the informativeness of more detailed schemes that annotate individual errors, such as Multidimensional Quality Metrics (MQM). In this paper, we fill this gap by proposing \textbf{\textsc{AutoMQM}}, a prompting technique which leverages the \textit{reasoning} and \textit{in-context learning} capabilities of large language models (LLMs) and asks them to identify and categorize errors in translations. We start by evaluating recent LLMs, such as PaLM and PaLM-2, through simple \textit{score prediction} prompting, and we study the impact of labeled data through in-context learning and finetuning. We then evaluate \textsc{AutoMQM} with PaLM-2 models, and we find that it improves performance compared to just prompting for scores (with particularly large gains for larger models) while providing interpretability through error spans that align with human annotations. View details
    Preview abstract Neural machine translation (NMT) has progressed rapidly over the past several years, and modern models are able to achieve relatively high quality using only monolingual text data, an approach dubbed Unsupervised Machine Translation, or UNMT. However, these models still struggle in a variety of ways, including aspects of translation that for a human are the easiest---for instance, correctly translating common nouns. This work explores a cheap and abundant resource to combat this problem: bilingual lexicons (\textsc{BiLex}s). We test the efficacy of bilingual lexicons in a real-world set-up, on 200-language translation models trained on web-mined text. We present several findings: (1) we demonstrate the most effective ways to use this resource for MT by extensively experimenting with lexical data augmentation techniques, such as codeswitching and lexical prompting; (2) we pinpoint what settings and languages are benefited most from lexical data augmentation; and (3) we provide an empirical, per-language analysis of the quality of the public resource PanLex, a multilingual lexicon covering thousands of languages. View details
    Preview abstract We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task View details
    PaLM: Scaling Language Modeling with Pathways
    Aakanksha Chowdhery
    Sharan Narang
    Jacob Devlin
    Maarten Bosma
    Hyung Won Chung
    Sebastian Gehrmann
    Parker Schuh
    Sasha Tsvyashchenko
    Abhishek Rao
    Yi Tay
    Noam Shazeer
    Nan Du
    Reiner Pope
    James Bradbury
    Guy Gur-Ari
    Toju Duke
    Henryk Michalewski
    Xavier Garcia
    Liam Fedus
    David Luan
    Barret Zoph
    Ryan Sepassi
    David Dohan
    Shivani Agrawal
    Mark Omernick
    Marie Pellat
    Aitor Lewkowycz
    Erica Moreira
    Rewon Child
    Oleksandr Polozov
    Zongwei Zhou
    Brennan Saeta
    Michele Catasta
    Jason Wei
    Kathy Meier-Hellstern
    arxiv:2204.02311 (2022)
    Preview abstract Large language models have been shown to achieve remarkable performance across a variety of natural language tasks using few-shot learning, which drastically reduces the number of task-specific training examples needed to adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning, we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM. We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks. We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language models and discuss potential mitigation strategies. View details
    Sparsely Activated Language Models are Efficient In-Context Learners
    Barret Richard Zoph
    Dmitry (Dima) Lepikhin
    Emma Wang
    Kathy Meier-Hellstern
    Kun Zhang
    Liam B. Fedus
    Maarten Paul Bosma
    Marie Pellat
    Maxim Krikun
    Nan Du
    Simon Tong
    Tao Wang
    Toju Duke
    Yuanzhong Xu
    Zongwei Zhou
    (2022)
    Preview abstract Scaling language models with more data, compute and parameters has driven significant progress in natural language processing. For example, thanks to scaling, GPT-3 was able to achieve strong performance on few-shot learning. However, training these large dense models require significant amounts of computing resources. In this paper, we develop a family of sparsely activated mixture-of-expert language models named \glam (\textbf{G}eneralist \textbf{La}nguage \textbf{M}odel), which can have many more parameters but require significant less training cost than dense models. The largest \glam has 1.2 trillion parameters, which is approximately 7x larger than GPT-3 but can be trained more efficiently. With only 1/3 of energy consumption to train GPT-3, \glam achieves better overall performance on 29 zero-shot and one-shot NLP tasks. For example, \glam gets 75.0\% one-shot exact match accuracy on the TriviaQA test server, a significant improvement over 68.0\% obtained by GPT-3. View details
    Preview abstract In this paper we share findings from our effort towards building practical machine translation (MT) systems capable of translating across over one thousand languages. We describe results across three research domains: (i) Building clean, web-mined datasets by leveraging semi-supervised pre-training for language-id and developing data-driven filtering techniques; (ii) Leveraging massively multilingual MT models trained with supervised parallel data for over $100$ languages and small monolingual datasets for over 1000 languages to enable translation for several previously under-studied languages; and (iii) Studying the limitations of evaluation metrics for long tail languages and conducting qualitative analysis of the outputs from our MT models. We hope that our work provides useful insights to practitioners working towards building MT systems for long tail languages, and highlights research directions that can complement the weaknesses of massively multilingual pre-trained models in data-sparse settings. View details
    Preview abstract Multilingual neural machine translation (NMT) typically learns to maximize the likelihood of training examples from a combination set of multiple language pairs. However, this mechanical combination only relies on the basic sharing to learn the inductive bias, which undermines the generalization and transferability of multilingual NMT models. In this paper, we introduce a multilingual crossover encoder-decoder (mXEnDec) to fuse language pairs at instance level to exploit cross-lingual signals. For better fusions on multilingual data, we propose several techniques to deal with the language interpolation, dissimilar language fusion and heavy data imbalance. Experimental results on a large-scale WMT multilingual data set show that our approach significantly improves model performance on general multilingual test sets and the model transferability on zero-shot test sets (up to $+5.53$ BLEU). Results on noisy inputs demonstrates the capability of our approach to improve model robustness against the code-switching noise. We also conduct qualitative and quantitative representation comparisons to analyze the advantages of our approach at the representation level. View details
    Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets
    Julia Kreutzer
    Lisa Wang
    Ahsan Wahab
    Nasanbayar Ulzii-Orshikh
    Allahsera Auguste Tapo
    Nishant Subramani
    Artem Sokolov
    Claytone Sikasote
    Monang Setyawan
    Supheakmungkol Sarin
    Sokhar Samb
    Benoît Sagot
    Clara E. Rivera
    Annette Rios
    Isabel Papadimitriou
    Salomey Osei
    Pedro Javier Ortiz Suárez
    Iroro Fred Ọ̀nọ̀mẹ̀ Orife
    Kelechi Ogueji
    Rubungo Andre Niyongabo
    Toan Nguyen
    Mathias Müller
    André Müller
    Shamsuddeen Hassan Muhammad
    Nanda Muhammad
    Ayanda Mnyakeni
    Jamshidbek Mirzakhalov
    Tapiwanashe Matangira
    Colin Leong
    Nze Lawson
    Yacine Jernite
    Mathias Jenny
    Bonaventure F. P. Dossou
    Sakhile Dlamini
    Nisansa de Silva
    Sakine Çabuk Ballı
    Stella Biderman
    Alessia Battisti
    Ahmed Baruwa
    Pallavi Baljekar
    Israel Abebe Azime
    Ayodele Awokoya
    Duygu Ataman
    Orevaoghene Ahia
    Oghenefego Ahia
    Sweta Agrawal
    Mofetoluwa Adeyemi
    TACL (2022)
    Preview abstract With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, web-mined text datasets covering hundreds of languages. However, to date there has been no systematic analysis of the quality of these publicly available datasets, or whether the datasets actually contain content in the languages they claim to represent. In this work, we manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4), and audit the correctness of language codes in a sixth (JW300). We find that lower-resource corpora have systematic issues: at least 15 corpora are completely erroneous, and a significant fraction contains less than 50% sentences of acceptable quality. Similarly, we find 82 corpora that are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-speakers of the languages in question, and supplement the human judgements with automatic analyses. Inspired by our analysis, we recommend techniques to evaluate and improve multilingual corpora and discuss the risks that come with low-quality data releases. View details
    Preview abstract We introduce \xtremes, a new benchmark to evaluate universal cross-lingual speech representations in many languages. XTREME-S covers four task families: speech recognition, classification, retrieval and speech-to-text translation. Covering 102 languages from 10+ language families, 3 different domains and 4 task families, XTREME-S aims to simplify multilingual speech representation evaluation, as well as catalyze research in ``universal'' speech representation learning. This paper describes the new benchmark and establishes the first speech-only and speech-text baselines using XLS-R and mSLAM on all downstream tasks. We motivate the design choices and detail how to use the benchmark. The code and pre-processing scripts will be made publicly available.\footnote{\small\url{https://huggingface.co/datasets/google/xtreme_s}} View details
    Preview abstract In this work, we study the evolution of the loss Hessian across many classification tasks in order to understand the effect the curvature of the loss has on the training dynamics. Whereas prior work has focused on how different learning rates affect the loss Hessian observed during training, we also analyze the effects of model initialization, architectural choices, and common training heuristics such as gradient clipping and learning rate warmup. Our results demonstrate that successful model and hyperparameter choices allow the early optimization trajectory to either avoid---or navigate out of---regions of high curvature and into flatter regions that tolerate a higher learning rate. Our results suggest a unifying perspective on how disparate mitigation strategies for training instability ultimately address the same underlying failure mode of neural network optimization, namely poor conditioning. Inspired by the conditioning perspective, we show that learning rate warmup can improve training stability just as much as batch normalization, layer normalization, MetaInit, GradInit, and Fixup initialization. View details