Orhan Firat
Research Areas
Authored Publications
Sort By
The Devil is in the Errors: Leveraging Large Language Models for Fine-grained Machine Translation Evaluation
Patrick Fernandes
Mara Finkelstein
André Martins
Graham Neubig
Ankush Garg
Conference on Machine Translation (2023)
Preview abstract
Automatic evaluation of machine translation (MT) is a critical tool driving the rapid iterative development of MT systems. While considerable progress has been made on direct estimation of quality scores, the resulting metrics lack the informativeness of more detailed schemes that annotate individual errors, such as Multidimensional Quality Metrics (MQM). In this paper, we fill this gap by proposing \textbf{\textsc{AutoMQM}}, a prompting technique which leverages the \textit{reasoning} and \textit{in-context learning} capabilities of large language models (LLMs) and asks them to identify and categorize errors in translations. We start by evaluating recent LLMs, such as PaLM and PaLM-2, through simple \textit{score prediction} prompting, and we study the impact of labeled data through in-context learning and finetuning. We then evaluate \textsc{AutoMQM} with PaLM-2 models, and we find that it improves performance compared to just prompting for scores (with particularly large gains for larger models) while providing interpretability through error spans that align with human annotations.
View details
Preview abstract
Neural machine translation (NMT) has progressed rapidly over the past several years, and modern models are able to achieve relatively high quality using only monolingual text data, an approach dubbed Unsupervised Machine Translation, or UNMT. However, these models still struggle in a variety of ways, including aspects of translation that for a human are the easiest---for instance, correctly translating common nouns. This work explores a cheap and abundant resource to combat this problem: bilingual lexicons (\textsc{BiLex}s). We test the efficacy of bilingual lexicons in a real-world set-up, on 200-language translation models trained on web-mined text. We present several findings: (1) we demonstrate the most effective ways to use this resource for MT by extensively experimenting with lexical data augmentation techniques, such as codeswitching and lexical prompting; (2) we pinpoint what settings and languages are benefited most from lexical data augmentation; and (3) we provide an empirical, per-language analysis of the quality of the public resource PanLex, a multilingual lexicon covering thousands of languages.
View details
FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation
Jan A. Botha
Xavier Garcia
Transactions of the Association for Computational Linguistics (2023)
Preview abstract
We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task
View details
PaLM: Scaling Language Modeling with Pathways
Aakanksha Chowdhery
Sharan Narang
Jacob Devlin
Maarten Bosma
Hyung Won Chung
Sebastian Gehrmann
Parker Schuh
Sasha Tsvyashchenko
Abhishek Rao
Yi Tay
Noam Shazeer
Nan Du
Reiner Pope
James Bradbury
Guy Gur-Ari
Toju Duke
Henryk Michalewski
Xavier Garcia
Liam Fedus
David Luan
Barret Zoph
Ryan Sepassi
David Dohan
Shivani Agrawal
Mark Omernick
Marie Pellat
Aitor Lewkowycz
Erica Moreira
Rewon Child
Oleksandr Polozov
Zongwei Zhou
Brennan Saeta
Michele Catasta
Jason Wei
Kathy Meier-Hellstern
arxiv:2204.02311 (2022)
Preview abstract
Large language models have been shown to achieve remarkable performance across a variety of natural language tasks using few-shot learning, which drastically reduces the number of task-specific training examples needed to adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning, we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM. We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks. We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language models and discuss potential mitigation strategies.
View details
Sparsely Activated Language Models are Efficient In-Context Learners
Barret Richard Zoph
Dmitry (Dima) Lepikhin
Emma Wang
Kathy Meier-Hellstern
Kun Zhang
Liam B. Fedus
Maarten Paul Bosma
Marie Pellat
Maxim Krikun
Nan Du
Simon Tong
Tao Wang
Toju Duke
Yuanzhong Xu
Zongwei Zhou
(2022)
Preview abstract
Scaling language models with more data, compute and parameters has driven significant progress in natural language processing. For example, thanks to scaling, GPT-3 was able to achieve strong performance on few-shot learning. However, training these large dense models require significant amounts of computing resources. In this paper, we develop a family of sparsely activated mixture-of-expert language models named \glam (\textbf{G}eneralist \textbf{La}nguage \textbf{M}odel), which can have many more parameters but require significant less training cost than dense models. The largest \glam has 1.2 trillion parameters, which is approximately 7x larger than GPT-3 but can be trained more efficiently. With only 1/3 of energy consumption to train GPT-3, \glam achieves better overall performance on 29 zero-shot and one-shot NLP tasks. For example, \glam gets 75.0\% one-shot exact match accuracy on the TriviaQA test server, a significant improvement over 68.0\% obtained by GPT-3.
View details
Building Machine Translation Systems for the Next Thousand Languages
Julia Kreutzer
Mengmeng Niu
Pallavi Nikhil Baljekar
Xavier Garcia
Maxim Krikun
Pidong Wang
Apu Shah
Macduff Richard Hughes
Google Research (2022)
Preview abstract
Multilingual neural machine translation (NMT) typically learns to maximize the likelihood of training examples from a combination set of multiple language pairs. However, this mechanical combination only relies on the basic sharing to learn the inductive bias, which undermines the generalization and transferability of multilingual NMT models. In this paper, we introduce a multilingual crossover encoder-decoder (mXEnDec) to fuse language pairs at instance level to exploit cross-lingual signals. For better fusions on multilingual data, we propose several techniques to deal with the language interpolation, dissimilar language fusion and heavy data imbalance. Experimental results on a large-scale WMT multilingual data set show that our approach significantly improves model performance on general multilingual test sets and the model transferability on zero-shot test sets (up to $+5.53$ BLEU).
Results on noisy inputs demonstrates the capability of our approach to improve model robustness against the code-switching noise. We also conduct qualitative and quantitative representation comparisons to analyze the advantages of our approach at the representation level.
View details
Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets
Julia Kreutzer
Lisa Wang
Ahsan Wahab
Nasanbayar Ulzii-Orshikh
Allahsera Auguste Tapo
Nishant Subramani
Artem Sokolov
Claytone Sikasote
Monang Setyawan
Supheakmungkol Sarin
Sokhar Samb
Benoît Sagot
Clara E. Rivera
Annette Rios
Isabel Papadimitriou
Salomey Osei
Pedro Javier Ortiz Suárez
Iroro Fred Ọ̀nọ̀mẹ̀ Orife
Kelechi Ogueji
Rubungo Andre Niyongabo
Toan Nguyen
Mathias Müller
André Müller
Shamsuddeen Hassan Muhammad
Nanda Muhammad
Ayanda Mnyakeni
Jamshidbek Mirzakhalov
Tapiwanashe Matangira
Colin Leong
Nze Lawson
Yacine Jernite
Mathias Jenny
Bonaventure F. P. Dossou
Sakhile Dlamini
Nisansa de Silva
Sakine Çabuk Ballı
Stella Biderman
Alessia Battisti
Ahmed Baruwa
Pallavi Baljekar
Israel Abebe Azime
Ayodele Awokoya
Duygu Ataman
Orevaoghene Ahia
Oghenefego Ahia
Sweta Agrawal
Mofetoluwa Adeyemi
TACL (2022)
Preview abstract
With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, web-mined text datasets covering hundreds of languages. However, to date there has been no systematic analysis of the quality of these publicly available datasets, or whether the datasets actually contain content in the languages they claim to represent. In this work, we manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4), and audit the correctness of language codes in a sixth (JW300). We find that lower-resource corpora have systematic issues: at least 15 corpora are completely erroneous, and a significant fraction contains less than 50% sentences of acceptable quality. Similarly, we find 82 corpora that are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-speakers of the languages in question, and supplement the human judgements with automatic analyses. Inspired by our analysis, we recommend techniques to evaluate and improve multilingual corpora and discuss the risks that come with low-quality data releases.
View details
XTREME-S: Evaluating Cross-lingual Speech Representations
Clara E. Rivera
Mihir Sanjay Kale
Sebastian Ruder
Simran Khanuja
Ye Jia
Yu Zhang
Proc. Interspeech 2022
Preview abstract
We introduce \xtremes, a new benchmark to evaluate universal cross-lingual speech representations in many languages. XTREME-S covers four task families: speech recognition, classification, retrieval and speech-to-text translation. Covering 102 languages from 10+ language families, 3 different domains and 4 task families, XTREME-S aims to simplify multilingual speech representation evaluation, as well as catalyze research in ``universal'' speech representation learning. This paper describes the new benchmark and establishes the first speech-only and speech-text baselines using XLS-R and mSLAM on all downstream tasks. We motivate the design choices and detail how to use the benchmark. The code and pre-processing scripts will be made publicly available.\footnote{\small\url{https://huggingface.co/datasets/google/xtreme_s}}
View details
A Loss Curvature Perspective On Training Instability in Deep Learning
Justin Gilmer
Behrooz Ghorbani
Ankush Garg
Behnam Neyshabur
David Cardoze
ICLR (2022)
Preview abstract
In this work, we study the evolution of the loss Hessian across many classification tasks in order to understand the effect the curvature of the loss has on the training dynamics. Whereas prior work has focused on how different learning rates affect the loss Hessian observed during training, we also analyze the effects of model initialization, architectural choices, and common training heuristics such as gradient clipping and learning rate warmup. Our results demonstrate that successful model and hyperparameter choices allow the early optimization trajectory to either avoid---or navigate out of---regions of high curvature and into flatter regions that tolerate a higher learning rate. Our results suggest a unifying perspective on how disparate mitigation strategies for training instability ultimately address the same underlying failure mode of neural network optimization, namely poor conditioning. Inspired by the conditioning perspective, we show that learning rate warmup can improve training stability just as much as batch normalization, layer normalization, MetaInit, GradInit, and Fixup initialization.
View details