Xuezhi Wang
Xuezhi Wang is a Research Scientist at Google DeepMind. Her primary interests are reasoning and systematic generalization in language models. She has also worked on robustness and fairness in NLP models. Xuezhi received her PhD degree from the Computer Science Department in Carnegie Mellon University in 2016.
Research Areas
Authored Publications
Sort By
A Mixed-Methods Approach to Understanding User Trust after Voice Assistant Failures
Allison Mercurio
Amanda Elizabeth Baughan
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems Pages (2023)
Preview abstract
Despite huge gains in performance in natural language understanding via large language models in recent years, voice assistants still often fail to meet user expectations. In this study, we conducted a mixed-methods analysis of how voice assistant failures affect users' trust in their voice assistants. To illustrate how users have experienced these failures, we contribute a crowdsourced dataset of 199 voice assistant failures, categorized across 12 failure sources. Relying on interview and survey data, we find that certain failures, such as those due to overcapturing users' input, derail user trust more than others. We additionally examine how failures impact users' willingness to rely on voice assistants for future tasks. Users often stop using their voice assistants for specific tasks that result in failures for a short period of time before resuming similar usage. We demonstrate the importance of low stakes tasks, such as playing music, towards building trust after failures.
View details
UL2: Unifying Language Learning Paradigms
Yi Tay
Xavier Garcia
Jason Wei
Hyung Won Chung
Steven Zheng
Neil Houlsby
ICLR (2023)
Preview abstract
Existing pre-trained models are generally geared towards a particular class of
problems. To date, there seems to be still no consensus on what the right architecture and pre-training setup should be. This paper presents a unified framework for
pre-training models that are universally effective across datasets and setups. We
begin by disentangling architectural archetypes with pre-training objectives – two
concepts that are commonly conflated. Next, we present a generalized and unified perspective for self-supervision in NLP and show how different pre-training
objectives can be cast as one another and how interpolating between different
objectives can be effective. We then propose Mixture-of-Denoisers (MoD), a pretraining objective that combines diverse pre-training paradigms together. We furthermore introduce a notion of mode switching, wherein downstream fine-tuning
is associated with specific pre-training schemes. We conduct extensive ablative
experiments to compare multiple pre-training objectives and find that our method
pushes the Pareto-frontier by outperforming T5 and/or GPT-like models across
multiple diverse setups. Finally, by scaling our model up to 20B parameters, we
achieve SOTA performance on 50 well-established supervised NLP tasks ranging from language generation (with automated and human evaluation), language
understanding, text classification, question answering, commonsense reasoning,
long text reasoning, structured knowledge grounding and information retrieval.
Our model also achieve strong results at in-context learning, outperforming 175B
GPT-3 on zero-shot SuperGLUE and tripling the performance of T5-XXL on oneshot summarization. Finally, we show that UL2 20B works well with chain-ofthought prompting and reasoning tasks, making it an appealing choice for research
into reasoning at a small to medium scale of 20B parameters. We publicly release
Flax-based T5X model checkpoints for the 20B model.
View details
Preview abstract
Careful prompt design is critical to the use of large language models in zero-shot or few-shot learning. As a consequence, there is a growing interest in automated methods to design optimal prompts. In this work, we propose Test-time Prompt Editing using Reinforcement learning (TEMPERA). In contrast to prior prompt generation methods, TEMPERA can efficiently leverage prior knowledge, is adaptive to different queries and provides an interpretable prompt for every query. To achieve this, we design a novel action space that allows flexible editing of the initial prompts covering a wide set of commonly-used components like instructions, few-shot exemplars, and verbalizers. The proposed method achieves significant gains compared with recent SoTA approaches like prompt tuning, AutoPrompt, and RLPrompt, across a variety of tasks including sentiment analysis, topic classification, natural language inference, and reading comprehension. Our method achieves 5.33x on average improvement in sample efficiency when compared to the traditional fine-tuning methods.
View details
Self-Consistency Improves Chain of Thought Reasoning in Language Models
Jason Wei
Sharan Narang
Aakanksha Chowdhery
ICLR 2023 (to appear)
Preview abstract
Chain-of-thought prompting combined with pre-trained large language models has achieved encouraging results on complex reasoning tasks. In this paper, we propose a new decoding strategy, self-consistency, to replace the naive greedy decoding used in chain-of-thought prompting. It first samples a diverse set of reasoning paths instead of only taking the greedy one, and then selects the most consistent answer by marginalizing out the sampled reasoning paths. Self-consistency leverages the intuition that a complex reasoning problem typically admits multiple different ways of thinking leading to its unique correct answer. Our extensive empirical evaluation shows that self-consistency boosts the performance of chain-of-thought prompting with a striking margin on a range of popular arithmetic and commonsense reasoning benchmarks, including GSM8K (+17.9%), SVAMP (+11.0%), AQuA (+12.2%), StrategyQA (+6.4%) and ARC-challenge (+3.9%).
View details
Preview abstract
We propose a new paradigm to help Large Language Models (LLMs) generate more accurate factual knowledge without retrieving from an external corpus, called RECITation-augmented gEneration (RECITE). Different from retrieval-augmented language models that retrieve relevant documents before generating the outputs, given an input, RECITE first recites one or several relevant passages from LLMs' own memory via sampling, and then produces the final answers. We show that RECITE is a powerful paradigm for knowledge-intensive NLP tasks. Specifically, we show that by utilizing recitation as the intermediate step, a recite-and-answer scheme can achieve new state-of-the-art performance in various closed-book question answering (CBQA) tasks. In experiments, we verify the effectiveness of RECITE on three pre-trained models (PaLM, UL2, and OPT) and three CBQA tasks (Natural Questions, TriviaQA, and HotpotQA).
View details
Preview abstract
As NLP models achieved state-of-the-art performances over benchmarks and gained wide applications, it has been increasingly important to ensure the safe deployment of these models in the real world, e.g., making sure the models are robust against unseen or challenging scenarios. Despite robustness being an increasingly studied topic, it has been separately explored in applications like vision and NLP, with various definitions, evaluation and mitigation strategies in multiple lines of research. In this paper, we aim to provide a unifying survey of how to define, measure and improve robustness in NLP. We first connect multiple definitions of robustness, then unify various lines of work on identifying robustness failures and evaluating models' robustness. Correspondingly, we present mitigation strategies that are data-driven, model-driven, and inductive-prior-based, with a more systematic view of how to effectively improve robustness in NLP models. Finally, we conclude by outlining open challenges and future directions to motivate further research in this area.
View details
Preview abstract
Recently, NLP models have achieved remarkable progress across a variety of tasks; however, they have also been criticized for being not robust. Many robustness problems can be attributed to models exploiting "spurious correlations", or "shortcuts" between the training data and the task labels. Most existing work identifies a limited set of task-specific shortcuts via human priors or error analyses, which requires extensive expertise and efforts. In this paper, we aim to automatically identify such spurious correlations in NLP models at scale. We first leverage existing interpretability methods to extract tokens that significantly affect model's decision process from the input text. We then distinguish "genuine" tokens and "spurious" tokens by analyzing model predictions across multiple corpora and further verify them through knowledge-aware perturbations. We show that our proposed method can effectively and efficiently identify a scalable set of ``shortcuts'', and mitigating these leads to more robust models in multiple applications.
View details
Preview abstract
Large pre-trained language models have shown remarkable performance over the past few years. These models, however, sometimes learn superficial features from the dataset and cannot generalize to the distributions that are dissimilar to the training scenario. There have been several approaches proposed to reduce model's reliance on these bias features which can improve model robustness in the out-of-distribution setting. However, existing methods usually use a fixed low-capacity model to deal with various bias features, which ignore the learnability of those features. In this paper, we analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases. We further show that by choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
View details
PaLM: Scaling Language Modeling with Pathways
Aakanksha Chowdhery
Sharan Narang
Jacob Devlin
Maarten Bosma
Hyung Won Chung
Sebastian Gehrmann
Parker Schuh
Sasha Tsvyashchenko
Abhishek Rao
Yi Tay
Noam Shazeer
Nan Du
Reiner Pope
James Bradbury
Guy Gur-Ari
Toju Duke
Henryk Michalewski
Xavier Garcia
Liam Fedus
David Luan
Barret Zoph
Ryan Sepassi
David Dohan
Shivani Agrawal
Mark Omernick
Marie Pellat
Aitor Lewkowycz
Erica Moreira
Rewon Child
Oleksandr Polozov
Zongwei Zhou
Brennan Saeta
Michele Catasta
Jason Wei
Kathy Meier-Hellstern
arxiv:2204.02311 (2022)
Preview abstract
Large language models have been shown to achieve remarkable performance across a variety of natural language tasks using few-shot learning, which drastically reduces the number of task-specific training examples needed to adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning, we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM. We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks. We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language models and discuss potential mitigation strategies.
View details
Preview abstract
Continual learning is essential for real-world deployment when there is a need to quickly adapt the model to new tasks without forgetting knowledge of old tasks. Existing work on continual sequence generation either always reuses existing parameters to learn new tasks, which is vulnerable to catastrophic forgetting on dissimilar tasks, or blindly adds new parameters for every new task, which could prevent knowledge sharing between similar tasks. To get the best of both worlds, in this work, we propose continual sequence generation with adaptive compositional modules to adaptively add modules in transformer architectures and compose both old and new modules for new tasks. We also incorporate pseudo experience replay to facilitate knowledge transfer in those shared modules. Experiment results on various sequences of generation tasks show that our framework can adaptively add modules or reuse modules based on task similarity, outperforming state-of-the-art baselines in terms of both performance and parameter efficiency. We make our code public at https://github.com/GT-SALT/Adaptive-Compositional-Modules.
View details