Soravit (Beer) Changpinyo
Research Areas
Authored Publications
Sort By
PaLI-X: On Scaling up a Multilingual Vision and Language Model
Josip Djolonga
Piotr Padlewski
Basil Mustafa
Carlos Riquelme
Sebastian Goodman
Yi Tay
Siamak Shakeri
Daniel Salz
Michael Tschannen
Hexiang (Frank) Hu
Mandar Joshi
Matthias Minderer
Filip Pavetić
Gang Li
Lucas Beyer
Anurag Arnab
Yuanzhong Xu
Keran Rong
Alexander Kolesnikov
Xiaohua Zhai
Neil Houlsby
Computer Vision and Pattern Recognition Conference (CVPR) (2024)
Preview abstract
We explore the boundaries of scaling up a multilingual vision and language model, both in terms of size of the components and the breadth of its training task mixture. Our model achieves new levels of performance on a wide-range of varied and complex tasks, including multiple image-based captioning and question-answering tasks, image-based document understanding and few-shot (in-context) learning, as well as object detection, video question answering, and video captioning. Our model advances the state-of-the-art on most vision-and-language benchmarks considered (20+ of them). Finally, we observe emerging capabilities, such as complex counting and multilingual object detection, tasks that are not explicitly in the training mix.
View details
What You See is What You Read? Improving Text-Image Alignment Evaluation
Michal Yarom
Eran Ofek
arXiv (2023)
Preview abstract
Automatically determining whether a text and a corresponding image are semantically aligned is a significant challenge for vision-language models, with applications in generative text-to-image and image-to-text tasks. In this work, we study methods for automatic image-text alignment evaluation. We first introduce a comprehensive evaluation set spanning multiple datasets from both text-to-image and image-to-text generation tasks, with human judgements for whether a given text-image pair is semantically aligned. We then describe two automatic methods to determine alignment: the first involving a pipeline based on question generation and visual question answering models, and the second employing an end-to-end classification approach based on synthetic data generation. Both methods surpass prior approaches in various text-image alignment tasks, with our analysis showing significant improvements in challenging cases that involve complex composition or unnatural images. Finally, we demonstrate how our approaches can localize specific misalignments between an image and a given text, and how they can be used to automatically re-rank candidates in text-to-image generation.
View details
PaLI: A Jointly-Scaled Multilingual Language-Image Model
Piotr Padlewski
Daniel Salz
Sebastian Alexander Goodman
Basil Mustafa
Lucas Beyer
Alexander Kolesnikov
Keran Rong
Hassan Akbari
Linting Xue
James Bradbury
Chao Jia
Carlos Riquelme
Xiaohua Zhai
Neil Houlsby
International Conference on Learning Representations (ICLR) (2023)
Preview abstract
Effective scaling and a flexible task interface enable large-capacity language models to excel at many tasks. PaLI (Pathways Language and Image model) extends these ideas to the joint modeling of language and vision. PaLI is a model that generates text based on visual and textual inputs. Using this API, PaLI is able to perform many vision, language, and multimodal tasks, across many languages. We train PaLI with two main principles: reuse of pretrained unimodal components, and joint scaling of modalities. Using large-capacity pretrained language models and vision models allows us to capitalize on their existing capabilities, while leveraging the substantial cost of training them. We scale PaLI models across three axes:the language component, the vision component, and the training data that fuses them. For the vision component, we train the largest and best-performing VisionTransformer (ViT) to date. For the data, we build an image-text training set over10B images and covering over 100 languages.
PaLI inherits and enhances language-understanding capabilities, and achieves state-of-the-art in multiple vision and language tasks (image classification, image captioning, visual question-answering, scene-text understanding, etc.), based on a simple, modular, and reuse-friendly platform for modeling and scaling.
View details
Connecting Vision and Language with Video Localized Narratives
Vittorio Ferrari
IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR) 2023 (to appear)
Preview abstract
We propose Video Localized Narratives, a new form of multimodal video annotations connecting vision and language. In the original Localized Narratives, annotators speak and move their mouse simultaneously on an image, thus grounding each word with a mouse trace segment. However, this is challenging on a video. Our new protocol empowers annotators to tell the story of a video with Localized Narratives, capturing even complex events involving multiple actors interacting with each other and with several passive objects. We annotated 20k videos of the OVIS, UVO, and Oops datasets, totalling 1.7M words. Based on this data, we also construct new benchmarks for the video narrative grounding and video question-answering tasks, and provide reference results from strong baseline models. Our annotations are available at https://google.github.io/video-localized-narratives/.
View details
MaXM: Towards Multilingual Visual Question Answering
Linting Xue
Michal Yarom
Findings of ACL: EMNLP (2023)
Preview abstract
Visual Question Answering (VQA) has been primarily studied through the lens of the English language. Yet, tackling VQA in other languages in the same manner would require a considerable amount of resources. In this paper, we propose scalable solutions to multilingual visual question answering (mVQA), on both data and modeling fronts. We first propose a translation-based framework to mVQA data generation that requires much less human annotation efforts than the conventional approach of directly collection questions and answers. Then, we apply our framework to the multilingual captions in the Crossmodal-3600 dataset and develop an efficient annotation protocol to create MaXM, a test-only VQA benchmark in 7 diverse languages. Finally, we develop a simple, lightweight, and effective approach as well as benchmark state-of-the-art English and multilingual VQA models. We hope that our benchmark encourages further research on mVQA.
View details
MetaCLUE: Towards Comprehensive Visual Metaphors Research
Brendan Driscoll
Zhiwei Jia
Garima Pruthi
Leonidas Guibas
Varun Jampani
CVPR (2023)
Preview abstract
Creativity is an indispensable part of human cognition and also an inherent part of how we make sense of the world. Metaphorical abstraction is fundamental in communicating creative ideas through nuanced relationships between abstract concepts such as feelings. While computer vision benchmarks and approaches predominantly focus on understanding and generating literal interpretations of images, metaphorical comprehension of images remains relatively unexplored. Towards this goal, we introduce MetaCLUE, a set of vision tasks on visual metaphor. We also collect high-quality and rich metaphor annotations (abstract objects, concepts, relationships along with their corresponding object boxes) as there do not exist any datasets that facilitate the evaluation of these tasks. We perform a comprehensive analysis of state-of-the-art models in vision and language based on our annotations, highlighting strengths and weaknesses of current approaches in visual metaphor Classification, Localization, Understanding (retrieval, question answering, captioning) and gEneration (text-to-image synthesis) tasks. We hope this work provides a concrete step towards developing AI systems with human-like creative capabilities.
View details
PreSTU: Pre-Training for Scene-Text Understanding
Jihyung Kil
Hexiang (Frank) Hu
Sebastian Goodman
Wei-Lun Chao
ICCV (2023)
Preview abstract
The ability to recognize and reason about text embedded in visual inputs is often lacking in vision-and-language (V&L) models, perhaps because V&L pre-training methods have often failed to include such an ability in their training objective. In this paper, we propose PreSTU, a novel pre-training recipe dedicated to scene-text understanding (STU). PreSTU introduces OCR-aware pre-training objectives that encourage the model to recognize text from an image and connect it to the rest of the image content. We implement PreSTU using a simple transformer-based encoder-decoder architecture, combined with large-scale image-text datasets with scene text obtained from an off-the-shelf OCR system. We empirically demonstrate the effectiveness of this pre-training approach on eight visual question answering and four image captioning benchmarks.
View details
Preview abstract
Visual Question Answering (VQA) has benefited from increasingly sophisticated models, but has not enjoyed the same level of engagement in terms of data creation. In this paper, we propose a method that automatically derives VQA examples at volume, by leveraging the abundance of existing image-caption annotations combined with neural models for textual question generation. We show that the resulting data is of high-quality. VQA models trained on our data improve state-of-the-art zero-shot accuracy by double digits and achieve a level of robustness that lacks in the same model trained on human-annotated VQA data.
View details
Preview abstract
Neural module networks (NMN) are a popular approach for solving multi-modal tasks such as visual question answering (VQA) and visual referring expression recognition (REF). A key limitation in prior implementations of NMNs is that the neural modules do not capture the association between the visual input and the relevant neighbourhood context of the textual input. This limits their generalizability. or instance, NMNs fail to understand new concepts such as "yellow sphere to the left" even when it is a combination of known concepts from train data: "blue sphere", "yellow cube", and "metallic cube to the left". In this paper, we address this limitation by introducing a language-guided adaptive convolution layer (LG-Conv) into NMN, in which the filter weights of convolutions are explicitly multiplied with a spatially varying language-guided kernel. Our model allows the neural module to adaptively co-attend over potential objects of interest from the visual and textual inputs. Extensive experiments on VQA and REF tasks demonstrate the effectiveness of our approach. Additionally, we propose a new challenging out-of-distribution test split for REF task, which we call C3-Ref+, for explicitly evaluating the NMN's ability to generalize well to adversarial perturbations and unseen combinations of known concepts. Experiments on C3-Ref+ further demonstrate the generalization capabilities of our approach.
View details
Preview abstract
Most existing image retrieval systems use text queries as a way for the user to express what they are looking for. However, fine-grained image retrieval often requires the ability to also express the where in the image the content they are looking for is. The text modality can only cumbersomely express such localization preferences, whereas pointing is a more natural fit. In this paper, we propose an image retrieval setup with a new form of multimodal queries, where the user simultaneously uses both spoken natural language (the what) and mouse traces over an empty canvas (the where) to express the characteristics of the desired target image. We then describe simple modifications to an existing image retrieval model, enabling it to operate in this setup. Qualitative and quantitative experiments show that our model effectively takes this spatial guidance into account, and provides significantly more accurate retrieval results compared to text-only equivalent systems.
View details