Chen-Yu Lee
Chen-Yu Lee is a research scientist at Google, where he works on machine learning and its real-world applications across various tasks and modalities. Previously, he spent two years at Apple, where he published the Technology Development Group's inaugural research paper at CVPR and launched several key features in ARKit (now Vision Pro). He received his PhD from UC San Diego, advised by Prof. Zhuowen Tu.
Research Areas
Authored Publications
Sort By
Found in the middle: Calibrating Positional Attention Bias Improves Long Context Utilization
Cheng-Yu Hsieh
Yung-Sung Chuang
Chun-Liang Li
Abhishek Kumar
James Glass
Alexander Ratner
Ranjay Krishna
2024
Preview abstract
Large language models (LLMs), even when specifically trained to process long input contexts, struggle to capture relevant information located in the middle of their input. This phenomenon has been known as the lost-in-the-middle problem. In this work, we make three contributions. First, we set out to understand the factors that cause this phenomenon. In doing so, we establish a connection between lost-in-the-middle to LLMs' intrinsic attention bias: LLMs exhibit a U-shaped attention bias where the tokens at the beginning and at the end of its input receive higher attention, regardless of their relevance. Second, we mitigate this positional bias through a calibration mechanism, found-in-the-middle, that allows the model to attend to contexts faithfully according to their relevance, even though when they are in the middle. Third, we show found-in-the-middle not only achieves better performance in locating relevant information within a long context, but also eventually leads to improved retrieval-augmented generation (RAG) performance across various tasks, outperforming existing methods by up to 15 percentage points. These findings open up future directions in understanding LLM attention bias and its potential consequences.
View details
CodecLM: Aligning Language Models with Tailored Synthetic Data
Chun-Liang Li
Jin Miao
NAACL 2024
Preview abstract
Instruction tuning has emerged as the key in aligning large language models (LLMs) with specific task instructions, thereby mitigating the discrepancy between the next-token prediction objective and users' actual goals. To reduce the labor and time cost to collect or annotate data by humans, researchers start to explore the use of LLMs to generate instruction-aligned synthetic data. Recent works focus on generating diverse instructions and applying LLM to increase instruction complexity, often neglecting downstream use cases. It remains unclear how to tailor high-quality data to elicit better instruction-following abilities in different target instruction distributions and LLMs. To this end, we introduce CodecLM, a general framework for adaptively generating high-quality synthetic data for LLM alignment with different downstream instruction distributions and LLMs. Drawing on the Encode-Decode principles, we use LLMs as codecs to guide the data generation process. We first encode seed instructions into metadata, which are concise keywords generated on-the-fly to capture the target instruction distribution, and then decode metadata to create tailored instructions. We also introduce Self-Rubrics and Contrastive Filtering during decoding to tailor data-efficient samples. Extensive experiments on four open-domain instruction following benchmarks validate the effectiveness of CodecLM over the current state-of-the-arts.
View details
Chain-of-Table: Evolves Tables in the LLM Reasoning Chain for Table Understanding
Zilong Wang
Hao Zhang
Chun-Liang Li
Jingbo Shang
ICLR (2024)
Preview abstract
Table-based reasoning with large language models (LLMs) is a promising direction to tackle many table understanding tasks, such as table-based question answering and fact verification. Compared with generic reasoning, table-based reasoning requires the extraction of underlying semantics from both free-form questions and semi-structured tabular data. Chain-of-Thought and its similar approaches incorporate the reasoning chain in the form of textual context, but it is still an open question how to effectively leverage tabular data in the reasoning chain. We propose the Chain-of-Table framework, where tabular data is explicitly used in the reasoning chain as a proxy for intermediate thoughts. Specifically, we guide LLMs using in-context learning to iteratively generate operations and update the table to represent a tabular reasoning chain. LLMs can therefore dynamically plan the next operation based on the results of the previous ones. This continuous evolution of the table forms a chain, showing the reasoning process for a given tabular problem. The chain carries structured information of the intermediate results, enabling more accurate and reliable predictions. Chain-of-Table achieves new state-of-the-art performance on WikiTQ, FeTaQA, and TabFact benchmarks across multiple LLM choices.
View details
Preview abstract
Grounded generation aims to equip language models (LMs) with the ability to produce more credible and accountable responses by accurately citing verifiable sources. However, existing methods, by either feeding LMs with raw or preprocessed materials, remain prone to errors. To address this, we introduce CaLM, a novel verification framework. CaLM leverages the insight that a robust grounded response should be consistent with information derived solely from its cited sources. Our framework empowers smaller LMs, which rely less on parametric memory and excel at processing relevant information given a query, to validate the output of larger LMs. Larger LM responses that closely align with the smaller LMs' output, which relies exclusively on cited documents, are verified. Responses showing discrepancies are iteratively refined through a feedback loop. Experiments on three open-domain question-answering datasets demonstrate significant performance gains of 1.5% to 7% absolute average without any required model fine-tuning.
View details
LMDX: Language Model-based Document Information Extraction And Localization
Kai Kang
Florian Luisier
Xiaoyu Sun
Ramya Sree Boppana
Zilong Wang
Jiaqi Mu
Hao Zhang
Nan Hua
Findings of the Association for Computational Linguistics ACL 2024, Association for Computational Linguistics, Bangkok, Thailand and virtual meeting, pp. 15140-15168
Preview abstract
Large Language Models (LLM) have revolutionized Natural Language Processing (NLP), improving state-of-the-art and exhibiting emergent capabilities across various tasks. However, their application in extracting information from visually rich documents, which is at the core of many document processing workflows and involving the extraction of key entities from semi-structured documents, has not yet been successful. The main obstacles to adopting LLMs for this task include the absence of layout encoding within LLMs, which is critical for high quality extraction, and the lack of a grounding mechanism to localize the predicted entities within the document. In this paper, we introduce Language Model-based Document Information EXtraction and Localization (LMDX), a methodology to reframe the document information extraction task for a LLM. LMDX enables extraction of singular, repeated, and hierarchical entities, both with and without training data, while providing grounding guarantees and localizing the entities within the document. Finally, we apply LMDX to the PaLM 2-S and Gemini Pro LLMs and evaluate it on VRDU and CORD benchmarks, setting a new state-of-the-art and showing how LMDX enables the creation of high quality, data-efficient parsers.
View details
Model Swarms: Collaborative Search of Adapted LLM Experts via Swarm Intelligence
Shangbin Feng
Yike Wang
Nathalie Rauschmayr
Yejin Choi
Yulia Tsvetkov
2024
Preview abstract
We propose Model Swarms, a collaborative search algorithm to adapt LLM experts via swarm intelligence. Specifically, Model Swarms starts with a pool of LLM experts and a utility function. Guided by the best-found checkpoints across models, diverse LLM experts collaboratively move in the weight space and search for adapted models that optimize the utility function. Compared to existing model composition approaches, Model Swarms offers modularity, works in low-data regimes, and doesn't need assumptions about existing experts and how they should be composed. Extensive experiments demonstrate that Model Swarms could flexibly adapt LLM experts to a single dataset, multi-dataset domains, reward models, as well as diverse human preferences. Further analysis reveals that LLM experts discover previously unseen capabilities in the search process and that Model Swarms enable the weak-to-strong transition of experts through the collaborative search process.
View details
Prefix Conditioning Unifies Language and Label Supervision
Kuniaki Saito
Kihyuk Sohn
Xiang Zhang
Chun-Liang Li
Kate Saenko
CVPR (2023)
Preview abstract
Vision-language contrastive learning suggests a new learning paradigm by leveraging a large amount of image-caption-pair data. The caption supervision excels at providing wide coverage in vocabulary that enables strong zero-shot image recognition performance. On the other hand, label supervision offers to learn more targeted visual representations that are label-oriented and can cover rare categories. To gain the complementary advantages of both kinds of supervision for contrastive image-caption pre-training, recent works have proposed to convert class labels into a sentence with pre-defined templates called prompts. However, a naive unification of the real caption and the prompt sentences could lead to a complication in learning, as the distribution shift in text may not be handled properly in the language encoder. In this work, we propose a simple yet effective approach to unify these two types of supervision using prefix tokens that inform a language encoder of the type of the input sentence (e.g., caption or prompt) at training time. Our method is generic and can be easily integrated into existing VL pre-training objectives such as CLIP or UniCL. In experiments, we show that this simple technique dramatically improves the performance in zero-shot image recognition accuracy of the pre-trained model.
View details
Preview abstract
We study anomaly clustering, grouping data into coherent clusters of anomaly types. This is different from anomaly detection that aims to divide anomalies from normal data.Unlike object-centered image clustering, anomaly clustering is particularly challenging as anomalous patterns are subtle and local. We present a simple yet effective clustering framework using a patch-based pretrained deep embeddings and off-the-shelf clustering methods. We define a distance function between images, each of which is represented as a bag of embeddings, by the Euclidean distance between weighted averaged embeddings. The weight defines the importance of instances (i.e., patch embeddings) in the bag, which may highlight defective regions. We compute weights in an unsupervised way or in a semi-supervised way when labeled normal data is available. Extensive experimental studies show the effectiveness of the proposed clustering framework along with a novel distance function upon existing multiple instance or deep clustering frameworks. Overall, our framework achieves 0.451 and 0.674 normalized mutual information scores on MVTec object and texture categories and further improve with a few labeled normal data(0.577, 0.669), far exceeding the baselines (0.244, 0.273)or state-of-the-art deep clustering methods (0.176, 0.277).
View details
QueryForm: A Simple Zero-shot Form Entity Query Framework
Jacob Devlin
Hao Zhang
Jennifer Dy
ACL (2023)
Preview abstract
Zero-shot transfer learning for document understanding is a crucial yet under-investigated scenario to help reduce the high cost involved in annotating document entities. We present a novel query-based framework, QueryForm, that extracts entity values from form-like documents in a zero-shot fashion. QueryForm contains a dual prompting mechanism that composes both the document schema and a specific entity type into a query, which is used to prompt a Transformer model to perform a single entity extraction task. Furthermore, we propose to leverage large-scale query-entity pairs generated from form-like webpages with weak HTML annotations to pre-train QueryForm. By unifying pre-training and fine-tuning into the same query-based framework, QueryForm enables models to learn from structured documents containing various entities and layouts, leading to better generalization to target document types without the need for target-specific training data. QueryForm sets new state-of-the-art average F1 score on both the XFUND (+4.6%~10.1%) and the Payment (+3.2%~9.5%) zero-shot benchmark, with a smaller model size and no additional image input.
View details
Pic2Word: Mapping Pictures to Words for Zero-shot Composed Image Retrieval
Kuniaki Saito
Kihyuk Sohn
Xiang Zhang
Chun-Liang Li
Kate Saenko
CVPR (2023)
Preview abstract
In Composed Image Retrieval (CIR), a user combines a query image with text to describe their intended target. Existing methods rely on supervised learning of CIR models using labeled triplets consisting of the query image, text specification, and the target image. Labeling such triplets is expensive and hinders broad applicability of CIR. In this work, we propose to study an important task, Zero-Shot Composed Image Retrieval (ZS-CIR), whose goal is to build a CIR model without requiring labeled triplets for training. To this end, we propose a novel method, called Pic2Word, that requires only weakly labeled image-caption pairs and unlabeled image datasets to train. Unlike existing supervised CIR models, our model trained on weakly labeled or unlabeled datasets shows strong generalization across diverse ZS-CIR tasks, e.g., attribute editing, object composition, and domain conversion. Our approach outperforms several supervised CIR methods on the common CIR benchmark, CIRR and Fashion-IQ.
View details