Jasmijn Bastings

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Amplifying Trans and Nonbinary Voices: A Community-Centred Harm Taxonomy for LLMs
    Eddie Ungless
    Beka Gulotta
    Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (2025)
    Preview abstract We explore large language model (LLM) responses that may negatively impact the transgender and nonbinary (TGNB) community and introduce the Transing Transformers Toolkit, T3, which provides resources for identifying such harmful response behaviors. The heart of T3 is a community-centred taxonomy of harms, developed in collaboration with the TGNB community, which we complement with, amongst other guidance, suggested heuristics for evaluation. To develop the taxonomy, we adopted a multi-method approach that included surveys and focus groups with community experts. The contribution highlights the importance of community-centred approaches in mitigating harm, and outlines pathways for LLM developers to improve how their models handle TGNB-related topics. View details
    Amplifying Trans and Nonbinary Voices: A Community-Centred Harm Taxonomy for LLMs
    Eddie Ungless
    Beka Gulotta
    Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (2025)
    Preview abstract We explore large language model (LLM) responses that may negatively impact the transgender and nonbinary (TGNB) community and introduce the Transing Transformers Toolkit, T3, which provides resources for identifying such harmful response behaviors. The heart of T3 is a community-centred taxonomy of harms, developed in collaboration with the TGNB community, which we complement with, amongst other guidance, suggested heuristics for evaluation. To develop the taxonomy, we adopted a multi-method approach that included surveys and focus groups with community experts. The contribution highlights the importance of community-centred approaches in mitigating harm, and outlines pathways for LLM developers to improve how their models handle TGNB-related topics. View details
    Preview abstract Misgendering is the act of referring to someone in way that does not reflect their gender identity. Translation systems, including foundation models capable of translation, can produce errors that result in misgendering harms. To measure the extent of such potential harms when translating into and out of English, we introduce a dataset, MiTTenS, covering 26 languages. The dataset is constructed with handcrafted passages that target known failure patterns, longer synthetically generated passages, and natural passages sourced from multiple domains. We demonstrate the usefulness of the dataset by evaluating both dedicated neural machine translation systems and foundation models, and show that all systems exhibit errors resulting in misgendering harms, even in high resource languages. View details
    Preview abstract We investigate a formalism for the conditions of a successful explanation of AI. We consider “success” to depend not only on what information the explanation contains, but also on what information the human explainee understands from it. Theory of mind literature discusses the folk concepts that humans use to understand and generalize behavior. We posit that folk concepts of behavior provide us with a “language” that humans understand behavior with. We use these folk concepts as a framework of social attribution by the human explainee—the information constructs that humans are likely to comprehend from explanations—by introducing a blueprint for an explanatory narrative (Figure 1) that explains AI behavior with these constructs. We then demonstrate that many XAI methods today can be mapped to folk concepts of behavior in a qualitative evaluation. This allows us to uncover their failure modes that prevent current methods from explaining successfully—ie, the information constructs that are missing for any given XAI method, and whose inclusion can decrease the likelihood of misunderstanding AI behavior. View details
    Scaling Vision Transformers to 22 Billion Parameters
    Josip Djolonga
    Basil Mustafa
    Piotr Padlewski
    Justin Gilmer
    Mathilde Caron
    Rodolphe Jenatton
    Lucas Beyer
    Michael Tschannen
    Anurag Arnab
    Carlos Riquelme
    Matthias Minderer
    Gamaleldin Elsayed
    Fisher Yu
    Avital Oliver
    Fantine Huot
    Mark Collier
    Vighnesh Birodkar
    Yi Tay
    Alexander Kolesnikov
    Filip Pavetić
    Dustin Tran
    Thomas Kipf
    Xiaohua Zhai
    Daniel Keysers
    Neil Houlsby
    Arxiv (2023)
    Preview abstract The scaling of Transformers has driven breakthrough capabilities for language models. At present, the largest large language models (LLMs) contain upwards of 100B parameters. Vision Transformers (ViT) have introduced the same architecture to image and video modeling, but these have not yet been successfully scaled to nearly the same degree; the largest dense ViT contains 4B parameters. We present a recipe for highly efficient training of a 22B-parameter ViT and perform a wide variety of experiments on the resulting model. When evaluated on downstream tasks (often with a lightweight linear model on frozen features) ViT22B demonstrates increasing performance with scale. We further observe other interesting benefits of scale, including an improved tradeoff between bias and performance, an improved alignment to human visual perception in terms of shape/texture bias, and improved robustness. ViT22B demonstrates the potential for "LLM-like'' scaling in vision, and provides key steps towards getting there. View details
    Preview abstract Feature attribution a.k.a. input salience methods which assign an importance score to a feature are abundant but may produce surprisingly different results for the same model on the same input. While differences are expected if disparate definitions of importance are assumed, most methods claim to provide faithful attributions and point at features most relevant for a model's prediction. Existing work on faithfulness evaluation is not conclusive and does not provide a clear answer as to how different methods are to be compared. Focusing on text classification and the model debugging scenario, we propose a protocol for faithfulness evaluation which makes use of partially synthetic data to obtain ground truth for feature importance ranking. Following the protocol, we do an in-depth analysis of four standard salience method classes on a range of datasets and shortcuts for BERT and LSTM models. We demonstrate that some of the most common method configurations provide poor results even for simplest shortcuts while a method judged to be too simplistic works remarkably well for BERT. View details
    Preview abstract Transformer-based language models are being pre-trained on ever growing datasets (hundreds of gigabytes) using ever growing amounts of parameters (millions to billions). These large amounts of training data are typically scraped from the public web, and may contain (public) personally identifiable information such as names and phone numbers. Moreover, recent findings also show that the capacity of these models allow them to memorize parts of the training data. One defense against such memorization that has not yet been fully explored in this context is differential privacy (DP). We focus on T5, a popular encoder-decoder, and show that by using recent advances in JAX and XLA we can train models with DP that do not suffer a big drop in utility, nor in training speed, and can still be fine-tuned to high accuracies on downstream tasks such as GLUE. Moreover, we show that T5's span corruption pre-training task, unlike next token prediction, is a good defense against data memorization. View details
    Preview abstract Experiments with pretrained models such as BERT are often based on a single checkpoint. While the conclusions drawn apply to the artifact (i.e., the particular instance of the model), it is not always clear whether they hold for the more general procedure (which includes the model architecture, training data, initialization scheme, and loss function). Recent work has shown that re-running pretraining can lead to substantially different conclusions about performance, suggesting that alternative evaluations are needed to make principled statements about procedures. To address this question, we introduce MultiBERTs: a set of 25 BERT-base checkpoints, trained with similar hyper-parameters as the original BERT model but differing in random initialization and data shuffling. The aim is to enable researchers to draw robust and statistically justified conclusions about pretraining procedures. The full release includes 25 fully trained checkpoints, as well as statistical guidelines and a code library implementing our recommended hypothesis testing methods. Finally, for five of these models we release a set of 28 intermediate checkpoints in order to support research on learning dynamics. View details
    We need to talk about random splits
    Anders Østerskov Søgaard
    Sebastian Ebert
    Proceeding of the 2021 Conference of the European Chapter of the Association for Computational Linguistics (EACL) (to appear)
    Preview abstract Gorman and Bedrick (2019) argued for using random splits rather than standard splits in NLP experiments. We argue that random splits, like standard splits, lead to overly optimistic performance estimates. We can also split data in biased or adversarial ways, e.g., training on short sentences and evaluating on long ones. Biased sampling has been used in domain adaptation to simulate real-world drift; this is known as the covariate shift assumption. In NLP, however, even worst-case splits, maximizing bias, often under-estimate the error observed on new samples of in-domain data, i.e., the data that models should minimally generalize to at test time. This invalidates the covariate shift assumption. Instead of using multiple random splits, future benchmarks should ideally include multiple, independent test sets instead; if infeasible, we argue that multiple biased splits leads to more realistic performance estimates than multiple random splits. View details
    The elephant in the interpretability room: Why use attention as explanation when we have saliency methods?
    Proceedings of the 2020 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP
    Preview abstract There is a recent surge of papers that focus on attention as explanation of model predictions, giving mixed evidence on whether attention can be used as such. This has led some to try and `improve' attention so as to make it more interpretable. We argue that we should pay attention no heed. While attention conveniently gives us one weight per input token and is easily extracted, it is often unclear towards what goal it is used as explanation. We argue that often that goal, whether explicitly stated or not, is to find out what input tokens are the most relevant to a prediction. When that is the case, input saliency methods better suit our needs, and there are no compelling reasons to use attention, despite the coincidence that it provides a weight for each input. With this position paper, we hope to shift some of the recent focus on attention to saliency methods, and for authors to clearly state the goal for their explanations. View details