Dan Zheng
Dan Zheng is a software engineer at Google DeepMind. His interests are the intersection of programming languages and machine learning.
Research Areas
Authored Publications
Sort By
AI-assisted Assessment of Coding Practices in Industrial Code Review
Ivan Budiselic
Malgorzata (Gosia) Salawa
Juanjo Carin
Jovan Andonov
Mateusz Lewko
Marko Ivanković
Rene Just
2024
Preview abstract
Modern code review is a process in which incremental code contributions made by one software developer are reviewed by one or more peers before it is committed to the version control system. An important element of modern code review is verifying that the code under review adheres to style guidelines and best practices of the corresponding programming language. Some of these rules are universal and can be checked automatically or enforced via code formatters. Other rules, however, are context-dependent and the corresponding checks are commonly left to developers who are experts in the given programming language and whose time is expensive. Many automated systems have been developed that attempt to detect various rule violations without any human intervention. Historically, such systems implement targeted analyses and were themselves expensive to develop. This paper presents AutoCommenter, a system that uses a state of the art large language model to automatically learn and enforce programming language best practices. We implemented AutoCommenter for four programming languages: C++, Java, Python and Go. We evaluated its performance and adoption in a large industrial setting. Our evaluation shows that a model that automatically learns language best practices is feasible and has a measurable positive impact on the developer workflow. Additionally, we present the challenges we faced when deploying such a model to tens of thousands of developers and provide lessons we learned for any practitioners that would like to replicate the work or build on top of it.
View details
Resolving Code Review Comments with Machine Learning
Alexander Frömmgen
Peter Choy
Elena Khrapko
Marcus Revaj
2024 IEEE/ACM 46th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP) (to appear)
Preview abstract
Code reviews are a critical part of the software development process, taking a significant amount of the code authors’ and the code reviewers’ time. As part of this process, the reviewer inspects the proposed code and asks the author for code changes through comments written in natural language. At Google, we see millions of reviewer comments per year, and authors require an average of ∼60 minutes active shepherding time between sending changes for review and finally submitting the change. In our measurements, the required active work time that the code author must devote to address reviewer comments grows almost linearly with the number of comments. However, with machine learning (ML), we have an opportunity to automate and streamline the code-review process, e.g., by proposing code changes based on a comment’s text.
We describe our application of recent advances in large sequence models in a real-world setting to automatically resolve code-review comments in the day-to-day development workflow at Google. We present the evolution of this feature from an asynchronous generation of suggested edits after the reviewer sends feedback, to an interactive experience that suggests code edits to the reviewer at review time. In deployment, code-change authors at Google address 7.5% of all reviewer comments by applying an ML-suggested edit. The impact of this will be to reduce the time spent on code reviews by hundreds of thousands of engineer hours annually at Google scale. Unsolicited, very positive feedback highlights that the impact of ML-suggested code edits increases Googlers’ productivity and allows them to focus on more creative and complex tasks.
View details
Dynamic Inference of Likely Symbolic Tensor Shapes in Python Machine Learning Programs
Koushik Sen
International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP) (2024) (to appear)
Preview abstract
In machine learning programs, it is often tedious to annotate the dimensions of shapes of various tensors that get created during execution. We present a dynamic likely tensor shape inference analysis that annotates the dimensions of shapes of tensor expressions with symbolic dimension values. Such annotations can be used for understanding the machine learning code written in popular frameworks, such as TensorFlow, PyTorch, JAX, and for finding bugs related to tensor shape mismatch.
View details
Effect Handlers and Choice-Based Learning in JAX
Shangyin Tan
Ningning Xie
NeurIPS Machine Learning for Systems Workshop (2023)
Preview abstract
Choice-based learning is a programming paradigm for expressing learning system in terms of choices and losses. We explore a practical implementation of choice-based learning in JAX by combining two techniques in a novel way: algebraic effects and the selection monad. We describe the design and implementation of our library, explore its usefulness for real-world applications like hyperparameter tuning and deep reinforcement learning, and compare it with existing approaches.
View details
Static Prediction of Runtime Errors by Learning to Execute Programs with External Resource Descriptions
Rishab Goel
International Conference on Learning Representations (ICLR) (2023)
Preview abstract
The execution behavior of a program often depends on external resources, such as program inputs or file contents, and so cannot be run in isolation. Nevertheless, software developers benefit from fast iteration loops where automated tools identify errors as early as possible, even before programs can be compiled and run. This presents an interesting machine learning challenge: can we predict runtime errors in a ``static'' setting, where program execution is not possible? Here, we introduce a real-world dataset and task for predicting runtime errors, which we show is difficult for generic models like Transformers. As an alternative, we develop an interpreter-inspired architecture with an inductive bias towards mimicking program executions, which models exception handling and ``learns to execute'' descriptions of the contents of external resources. Surprisingly, we show that the model can also predict the location of the error, despite being trained only on labels indicating the presence/absence and kind of error. In total, we present a practical and difficult-yet-approachable challenge problem related to learning program execution and we demonstrate promising new capabilities of interpreter-inspired machine learning models for code.
View details
Mutable Value Semantics
Dimitri Racordon
Dave Abrahams
Brennan Saeta
Journal of Object Technology, 21 (2022)
Preview abstract
Mutable value semantics is a programming discipline that upholds the independence of values to support local reasoning. In the discipline’s strictest form, references become second-class citizens: they are only created implicitly, at function boundaries, and cannot be stored in variables or object fields. Hence, variables can never share mutable state. Unlike pure functional programming, however, mutable value semantics allows part-wise in-place mutation, thereby eliminating the memory traffic usually associated with functional updates of immutable data.
This paper presents implementation strategies for compiling programs with mutable value semantics into efficient native code. We study Swift, a programming language based on that discipline, through the lens of a core language that strips some of Swift’s features to focus on the semantics of its value types. The strategies that we introduce leverage the inherent properties of mutable value semantics to unlock aggressive optimizations. Fixed-size values are allocated on the stack, thereby enabling numerous off-the-shelf compiler optimizations, while dynamically sized containers use copy-on-write to mitigate copying costs.
View details
Swift for TensorFlow: A portable, flexible platform for deep learning
Brennan Saeta
Marc Rasi
Brad Larson
Xihui Wu
Parker Schuh
Saleem Abdulrasool
Aleksandr Efremov
Dave Abrahams
Chris Lattner
Richard Wei
MLSys (2021)
Preview abstract
Swift for TensorFlow is a deep learning platform that scales from mobile devices to clusters of hardware accelerators in data centers. It combines a language-integrated automatic differentiation system and multiple Tensor implementations within a modern ahead-of-time compiled language oriented around mutable value semantics. The resulting platform has been validated through use in over 30 deep learning models and has been employed across data center and mobile applications.
View details