Parker Riley

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Automatic evaluation of machine translation (MT) is a critical tool driving the rapid iterative development of MT systems. While considerable progress has been made on direct estimation of quality scores, the resulting metrics lack the informativeness of more detailed schemes that annotate individual errors, such as Multidimensional Quality Metrics (MQM). In this paper, we fill this gap by proposing \textbf{\textsc{AutoMQM}}, a prompting technique which leverages the \textit{reasoning} and \textit{in-context learning} capabilities of large language models (LLMs) and asks them to identify and categorize errors in translations. We start by evaluating recent LLMs, such as PaLM and PaLM-2, through simple \textit{score prediction} prompting, and we study the impact of labeled data through in-context learning and finetuning. We then evaluate \textsc{AutoMQM} with PaLM-2 models, and we find that it improves performance compared to just prompting for scores (with particularly large gains for larger models) while providing interpretability through error spans that align with human annotations. View details
    XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages
    Sebastian Ruder
    Mihir Sanjay Kale
    Shruti Rijhwani
    Jean-Michel Sarr
    Cindy Wang
    John Wieting
    Christo Kirov
    Dana L. Dickinson
    Bidisha Samanta
    Connie Tao
    David Adelani
    Reeve Ingle
    Dmitry Panteleev
    Findings of the Association for Computational Linguistics: EMNLP 2023, Association for Computational Linguistics, Singapore, pp. 1856-1884
    Preview abstract Data scarcity is a crucial issue for the development of highly multilingual NLP systems. Yet for many under-represented languages (ULs) — languages for which NLP research is particularly far behind in meeting user needs — it is feasible to annotate small amounts of data. Motivated by this, we propose XTREME-UP, a benchmark defined by: its focus on the scarce-data scenario rather than zero-shot; its focus on user-centric tasks — tasks with broad adoption by speakers of high-resource languages; and its focus on under-represented languages where this scarce-data scenario tends to be most realistic. XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies including ASR, OCR, MT, and information access tasks that are of general utility. We create new datasets for OCR, autocomplete, semantic parsing, and transliteration, and build on and refine existing datasets for other tasks. XTREME-UP provides methodology for evaluating many modeling scenarios including text only, multi-modal (vision, audio, and text), supervised parameter tuning, and in-context learning. We evaluate commonly used models on the benchmark. We release all code and scripts to train and evaluate models. View details
    Preview abstract We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task View details