Alexander Bilmes

PhD in physics at KIT, Karlsruhe, Germany: on developing superconducting quantum detectors for tunneling two-level-systems (TLS), and on TLS research in readily-made superconducting qubits. Expert in microfabrication and design of superconducting quantum circuits, as well as in cryogenic operation and quantum manipulation of superconducting qubits.

Research Areas

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories
    Tyler Cochran
    Bernhard Jobst
    Yuri Lensky
    Gaurav Gyawali
    Norhan Eassa
    Melissa Will
    Aaron Szasz
    Dmitry Abanin
    Rajeev Acharya
    Laleh Beni
    Trond Andersen
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Abe Asfaw
    Juan Atalaya
    Brian Ballard
    Alexandre Bourassa
    Michael Broughton
    David Browne
    Brett Buchea
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Anthony Cabrera
    Juan Campero
    Hung-Shen Chang
    Jimmy Chen
    Benjamin Chiaro
    Jahan Claes
    Agnetta Cleland
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Sayan Das
    Laura De Lorenzo
    Agustin Di Paolo
    Paul Donohoe
    ILYA Drozdov
    Andrew Dunsworth
    Alec Eickbusch
    Aviv Elbag
    Mahmoud Elzouka
    Vinicius Ferreira
    Ebrahim Forati
    Austin Fowler
    Brooks Foxen
    Suhas Ganjam
    Robert Gasca
    Élie Genois
    William Giang
    Dar Gilboa
    Raja Gosula
    Alejo Grajales Dau
    Dietrich Graumann
    Alex Greene
    Steve Habegger
    Monica Hansen
    Sean Harrington
    Paula Heu
    Oscar Higgott
    Jeremy Hilton
    Robert Huang
    Ashley Huff
    Bill Huggins
    Cody Jones
    Chaitali Joshi
    Pavol Juhas
    Hui Kang
    Amir Karamlou
    Kostyantyn Kechedzhi
    Trupti Khaire
    Bryce Kobrin
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Vlad Kurilovich
    Dave Landhuis
    Tiano Lange-Dei
    Brandon Langley
    Kim Ming Lau
    Justin Ledford
    Kenny Lee
    Loick Le Guevel
    Wing Li
    Alexander Lill
    Will Livingston
    Daniel Lundahl
    Aaron Lunt
    Sid Madhuk
    Ashley Maloney
    Salvatore Mandra
    Leigh Martin
    Orion Martin
    Cameron Maxfield
    Seneca Meeks
    Anthony Megrant
    Reza Molavi
    Sebastian Molina
    Shirin Montazeri
    Ramis Movassagh
    Charles Neill
    Michael Newman
    Murray Ich Nguyen
    Chia Ni
    Kris Ottosson
    Alex Pizzuto
    Rebecca Potter
    Orion Pritchard
    Ganesh Ramachandran
    Matt Reagor
    David Rhodes
    Gabrielle Roberts
    Kannan Sankaragomathi
    Henry Schurkus
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Vlad Sivak
    Spencer Small
    Clarke Smith
    Sofia Springer
    George Sterling
    Jordan Suchard
    Alex Sztein
    Doug Thor
    Mert Torunbalci
    Abeer Vaishnav
    Justin Vargas
    Sergey Vdovichev
    Guifre Vidal
    Steven Waltman
    Shannon Wang
    Brayden Ware
    Kristi Wong
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Bicheng Ying
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Yu Chen
    Vadim Smelyanskiy
    Adam Gammon-Smith
    Frank Pollmann
    Michael Knap
    Nature, 642 (2025), 315–320
    Preview abstract Lattice gauge theories (LGTs) can be used to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging, as it requires solving many-body problems that are generally beyond perturbative limits. Here we investigate the dynamics of local excitations in a LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit that prepares low-energy states that have a large overlap with the ground state; then we create charge excitations with local gates and simulate their quantum dynamics by means of a discretized time evolution. As the electric field coupling constant is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the electric field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT, from which we uncover two distinct regimes inside the confining phase: for weak confinement, the string fluctuates strongly in the transverse direction, whereas for strong confinement, transverse fluctuations are effectively frozen. We also demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a new set of techniques for investigating emergent excitations and string dynamics. View details
    Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
    Trond Andersen
    Rhine Samajdar
    Andre Petukhov
    Jesse Hoke
    Dmitry Abanin
    ILYA Drozdov
    Xiao Mi
    Alexis Morvan
    Charles Neill
    Rajeev Acharya
    Richard Ross Allen
    Kyle Anderson
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Abe Asfaw
    Juan Atalaya
    Gina Bortoli
    Alexandre Bourassa
    Leon Brill
    Michael Broughton
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Juan Campero
    Hung-Shen Chang
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Agustin Di Paolo
    Andrew Dunsworth
    Clint Earle
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Ebrahim Forati
    Austin Fowler
    Brooks Foxen
    Gonzalo Garcia
    Élie Genois
    William Giang
    Dar Gilboa
    Raja Gosula
    Alejo Grajales Dau
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Sean Harrington
    Paula Heu
    Gordon Hill
    Markus Hoffmann
    Trent Huang
    Ashley Huff
    Bill Huggins
    Sergei Isakov
    Justin Iveland
    Cody Jones
    Pavol Juhas
    Marika Kieferova
    Alexei Kitaev
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Alexander Lill
    Wayne Liu
    Salvatore Mandra
    Orion Martin
    Steven Martin
    Seneca Meeks
    Amanda Mieszala
    Shirin Montazeri
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Murray Ich Nguyen
    Tom O'Brien
    Seun Omonije
    Alex Opremcak
    Rebecca Potter
    Leonid Pryadko
    David Rhodes
    Charles Rocque
    Negar Saei
    Kannan Sankaragomathi
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Vlad Sivak
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Doug Thor
    Alfredo Torres
    Guifre Vidal
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Jeremy Hilton
    Anthony Megrant
    Yu Chen
    Vadim Smelyanskiy
    Vedika Khemani
    Sarang Gopalakrishnan
    Tomaž Prosen
    Science, 384 (2024), pp. 48-53
    Preview abstract Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain’s center, P(M). The first two moments of P(M) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems. View details
    Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits
    Lara Faoro
    Kunal Arya
    Andrew Dunsworth
    Trent Huang
    Austin Fowler
    Frank Arute
    Bob B. Buckley
    Nicholas Bushnell
    Jimmy Chen
    Roberto Collins
    Alan R. Derk
    Sean Harrington
    Fedor Kostritsa
    Pavel Laptev
    Xiao Mi
    Shirin Montazeri
    Josh Mutus
    Charles Neill
    Alex Opremcak
    Nicholas Redd
    Vladimir Shvarts
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Yu Chen
    Vadim Smelyanskiy
    John Martinis
    Anthony Megrant
    Rami Barends
    Nature Physics (2021)
    Preview abstract Scalable quantum computing can become a reality with error correction, provided that coherent qubits can be constructed in large arrays. The key premise is that physical errors can remain both small and sufficiently uncorrelated as devices scale, so that logical error rates can be exponentially suppressed. However, impacts from cosmic rays and latent radioactivity violate these assumptions. An impinging particle can ionize the substrate and induce a burst of quasiparticles that destroys qubit coherence throughout the device. High-energy radiation has been identified as a source of error in pilot superconducting quantum devices, but the effect on large-scale algorithms and error correction remains an open question. Elucidating the physics involved requires operating large numbers of qubits at the same rapid timescales necessary for error correction. Here, we use space- and time-resolved measurements of a large-scale quantum processor to identify bursts of quasiparticles produced by high-energy rays. We track the events from their initial localized impact as they spread, simultaneously and severely limiting the energy coherence of all qubits and causing chip-wide failure. Our results provide direct insights into the impact of these damaging error bursts and highlight the necessity of mitigation to enable quantum computing to scale. View details
    Realizing topologically ordered states on a quantum processor
    Y.-J. Liu
    A. Smith
    C. Knapp
    M. Newman
    N. C. Jones
    Z. Chen
    X. Mi
    A. Dunsworth
    I. Aleiner
    F. Arute
    K. Arya
    J. Atalaya
    R. Barends
    J. Basso
    M. Broughton
    B. B. Buckley
    N. Bushnell
    B. Chiaro
    R. Collins
    W. Courtney
    A. R Derk
    D. Eppens
    L. Faoro
    E. Farhi
    B. Foxen
    A. Greene
    S. D. Harrington
    J. Hilton
    T. Huang
    W. J. Huggins
    S. V. Isakov
    K. Kechedzhi
    A. N. Korotkov
    F. Kostritsa
    D. Landhuis
    P. Laptev
    O. Martin
    M. Mohseni
    S. Montazeri
    W. Mruczkiewicz
    J. Mutus
    C. Neill
    T. E. O'Brien
    A. Opremcak
    B. Pato
    A. Petukhov
    V. Shvarts
    D. Strain
    M. Szalay
    Z. Yao
    P. Yeh
    J. Yoo
    A. Megrant
    Y. Chen
    V. Smelyanskiy
    A. Kitaev
    M. Knap
    F. Pollmann
    Science, 374 (2021), pp. 1237-1241
    Preview abstract The discovery of topological order has revolutionized the understanding of quantum matter in modern physics and provided the theoretical foundation for many quantum error correcting codes. Realizing topologically ordered states has proven to be extremely challenging in both condensed matter and synthetic quantum systems. Here, we prepare the ground state of the emblematic toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor. We measure a topological entanglement entropy of Stopo ≈ −0.95 × ln 2 and simulate anyon interferometry to extract the braiding statistics of the emergent excitations. Furthermore, we investigate key aspects of the surface code, including logical state injection and the decay of the non-local order parameter. Our results illustrate the topological nature of these states and demonstrate their potential for implementing the surface code. View details