Chengrun Yang

Chengrun Yang

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Recent advancements in Large Language Models (LLMs) have created new opportunities to enhance performance on complex reasoning tasks by leveraging test-time computation. However, existing scaling methods have key limitations: parallel methods like repeated sampling are often inefficient and quickly saturate, while sequential methods like SELF-REFINE struggle to improve after a few rounds. Although combining these approaches shows promise, current methods require fine-tuned reward and revision models. This paper proposes Self-Enhanced Test-Time Scaling (SETS), a simple yet effective approach that overcomes these limitations by strategically combining parallel and sequential techniques and fully leveraging LLMs' self-improvement abilities. SETS exploits the inherent self-verification and self-correction capabilities of LLMs, unifying sampling, verification, and correction within a single framework. This facilitates efficient and scalable test-time computation for enhanced performance on complex tasks without any model training. Our comprehensive experimental results on challenging benchmarks spanning planning, reasoning, math, and coding demonstrate that SETS achieves significant performance improvements and more advantageous test-time scaling behavior than the alternatives. View details
    TabNAS: Rejection Sampling for Neural Architecture Search on Tabular Datasets
    Gabriel M. Bender
    Hanxiao Liu
    Madeleine Udell
    Yifeng Lu
    Da Huang
    Neural Information Processing Systems (2022)
    Preview abstract The best neural architecture for a given machine learning problem depends on many factors: not only the complexity and structure of the dataset, but also on resource constraints including latency, compute, energy consumption, etc. Neural architecture search (NAS) for tabular datasets is an important but under-explored problem. Previous NAS algorithms designed for image search spaces incorporate resource constraints directly into the reinforcement learning (RL) rewards. However, for NAS on tabular datasets, this protocol often discovers suboptimal architectures. This paper develops TabNAS, a new and more effective approach to handle resource constraints in tabular NAS using an RL controller motivated by the idea of rejection sampling. TabNAS immediately discards any architecture that violates the resource constraints without training or learning from that architecture. TabNAS uses a Monte-Carlo-based correction to the RL policy gradient update to account for this extra filtering step. Results on several tabular datasets demonstrate the superiority of TabNAS over previous reward-shaping methods: it finds better models that obey the constraints. View details