Dan Ellis
Dan Ellis joined Google in 2015 after 15 years as a faculty member in the Electrical Engineering department at Columbia University, where he headed the Laboratory for Recognition and Organization of Speech and Audio (LabROSA). He has over 150 publications in the areas of audio processing, speech recognition, and music information retrieval.
Research Areas
Authored Publications
Sort By
MuLan: A Joint Embedding of Music Audio and Natural Language
Qingqing Huang
Ravi Ganti
Judith Yue Li
Proceedings of the the 23rd International Society for Music Information Retrieval Conference (ISMIR) (2022) (to appear)
Preview abstract
Music tagging and content-based retrieval systems have traditionally been constructed using pre-defined ontologies covering a rigid set of music attributes or text queries. This paper presents MuLan: a first attempt at a new generation of acoustic models that link music audio directly to unconstrained natural language music descriptions. MuLan takes the form of a two-tower, joint audio-text embedding model trained using 44 million music recordings (370K hours) and weakly-associated, free-form text annotations. Through its compatibility with a wide range of music genres and text styles (including conventional music tags), the resulting audio-text representation subsumes existing ontologies while graduating to true zero-shot functionalities. We demonstrate the versatility of the MuLan embeddings with a range of experiments including transfer learning, zero-shot music tagging, language understanding in the music domain, and cross-modal retrieval applications.
View details
What's All the FUSS About Free Universal Sound Separation Data?
Romain Serizel
Nicolas Turpault
Eduardo Fonseca
Justin Salamon
Prem Seetharaman
ICASSP 2021
Preview abstract
We introduce the Free Universal Sound Separation (FUSS) dataset, a new corpus for experiments in separating mixtures of an unknown number of sounds from an open domain of sound types. The dataset consists of 23 hours of single-source audio data drawn from 357 classes, which are used to create mixtures of one to four sources. To simulate reverberation, an acoustic room simulator is used to generate impulse responses of box shaped rooms with frequency-dependent reflective walls. Additional open-source data augmentation tools are also provided to produce new mixtures with different combinations of sources and room simulations. Finally, we introduce an open-source baseline separation model, based on an improved time-domain convolutional network (TDCN++), that can separate a variable number of sources in a mixture. This model achieves 9.8 dB of scale-invariant signal-to-noise ratio improvement (SI-SNRi) on mixtures with two to four sources, while reconstructing single-source inputs with 35.5 dB absolute SI-SNR. We hope this dataset will lower the barrier to new research and allow for fast iteration and application of novel techniques from other machine learning domains to the sound separation challenge.
View details
Into the Wild with AudioScope: Unsupervised Audio-Visual Separation of On-Screen Sounds
Tal Remez
International Conference on Learning Representations (ICLR) 2021
Preview abstract
Recent progress in deep learning has enabled many advances in sound separation and visual scene understanding. However, extracting sound sources which are apparent in natural videos remains an open problem. In this work, we present AudioScope, a novel audio-visual sound separation framework that can be trained without supervision to isolate on-screen sound sources from real in-the-wild videos. Prior audio-visual separation work assumed artificial limitations on the domain of sound classes (e.g., to speech or music), constrained the number of sources, and required strong sound separation or visual segmentation labels. AudioScope overcomes these limitations, operating on an open domain of sounds, with variable numbers of sources, and without labels or prior visual segmentation. The training procedure for AudioScope uses mixture invariant training (MixIT) to separate synthetic mixtures of mixtures (MoMs) into individual sources, where noisy labels for mixtures are provided by an unsupervised audio-visual coincidence model. Using the noisy labels, along with attention between video and audio features, AudioScope learns to identify audio-visual similarity and to suppress off-screen sounds. We demonstrate the effectiveness of our approach using a dataset of video clips extracted from open-domain YFCC100m video data. This dataset contains a wide diversity of sound classes recorded in unconstrained conditions, making the application of previous methods unsuitable. For evaluation and semi-supervised experiments, we collected human labels for presence of on-screen and off-screen sounds on a small subset of clips.
View details
Self-Supervised Learning from Automatically Separated Sound Scenes
Xavier Serra
WASPAA 2021 (2021)
Preview abstract
Real-world sound scenes consist of time-varying collections of sound sources, each generating characteristic sound events that are mixed together in audio recordings. The association of these constituent sound events with their mixture and each other is semantically-constrained: the sound scene contains the union of source classes and not all classes naturally co-occur. With this motivation, this paper explores the use of unsupervised automatic sound separation to decompose unlabeled sound scenes into multiple semantically-linked views for use in self-supervised contrastive learning. We find that learning to associate input mixtures with their automatically separated outputs yields stronger representations than past approaches that use the mixtures alone. Further, we discover that optimal source separation is not required for successful contrastive learning by demonstrating that a range of separation system convergence states all lead to useful and often complementary example transformations. Our best system incorporates these unsupervised separation models into a single augmentation front-end and jointly optimizes similarity maximization and coincidence prediction objectives across the views. The result is an unsupervised audio representation that rivals state-of-the-art alternatives on the established shallow AudioSet classification benchmark.
View details
The Benefit of Temporally-Strong Labels in Audio Event Classification
Caroline Liu
Proceedings of ICASSP 2021 (2021)
Preview abstract
To reveal the importance of temporal precision in ground truth audio event labels, we collected precise (∼0.1 sec resolution) “strong” labels for a portion of the AudioSet dataset. We devised a temporally strong evaluation set (including explicit negatives of varying difficulty) and a small strong-labeled training subset of 67k clips (compared to the original dataset’s 1.8M clips labeled at 10 sec resolution). We show that fine-tuning with a mix of weak- and strongly-labeled data can substantially improve classifier performance, even when evaluated using only the original weak labels. For a ResNet50 architecture, d' on the strong evaluation data including explicit negatives improves from 1.13 to 1.41. The new labels are available as an update to AudioSet.
View details
Self-Supervised Audio-Visual Separation of On-Screen Sounds from Unlabeled Videos
Tal Remez
NeurIPS 2020 Workshop on Self-Supervised Learning for Speech and Audio Processing
Preview abstract
Recent progress in deep learning has enabled many advances in sound separation and visual scene understanding. However, extracting sound sources which are apparent in natural videos remains an open problem. In this work, we present AudioScope, a novel audio-visual sound separation framework that can be trained without supervision to isolate on-screen sound sources from real in-the-wild videos. Prior audio-visual separation work assumed artificial limitations on the domain of sound classes (e.g., to speech or music), constrained the number of sources, and required strong sound separation or visual segmentation labels. AudioScope overcomes these limitations, operating on an open domain of sounds, with variable numbers of sources, and without labels or prior visual segmentation. The training procedure for AudioScope uses mixture invariant training (MixIT) to separate synthetic mixtures of mixtures (MoMs) into individual sources, where noisy labels for mixtures are provided by an unsupervised audio-visual coincidence model. Using the noisy labels, along with attention between video and audio features, AudioScope learns to identify audio-visual similarity and to suppress off-screen sounds. We demonstrate the effectiveness of our approach using a dataset of video clips extracted from open-domain YFCC100m video data. This dataset contains a wide diversity of sound classes recorded in unconstrained conditions, making the application of previous methods unsuitable. For evaluation and semi-supervised experiments, we collected human labels for presence of on-screen and off-screen sounds on a small subset of clips.
View details
Coincidence, Categorization, and Consolidation: Learning to Recognize Sounds with Minimal Supervision
Proceedings of ICASSP 2020 (2020) (to appear)
Preview abstract
Humans do not acquire perceptual abilities like we train machines. While machine learning algorithms typically operate on large collections of randomly-chosen, explicitly-labeled examples, human acquisition relies far greater on multimodal unsupervised learning (as infants) and active learning (as children). With this motivation, we present a learning framework for sound representation and recognition that combines (i) a self-supervised objective based on a general notion of unimodal and cross-modal coincidence, (ii) a novel clustering objective that reflects our need to impose categorical structure on our experiences, and (iii) a cluster-based active learning procedure that solicits targeted weak supervision to consolidate hypothesized categories into relevant semantic classes. By jointly training a single sound embedding/clustering/classification network according to these criteria, we achieve a new state-of-the-art unsupervised audio representation and demonstrate
up to 20-fold reduction in labels required to reach a desired classification performance.
View details
Large-Scale Weakly-Supervised Content Embeddingsfor Music Recommendation and Tagging
Qingqing Huang
Li Zhang
John Roberts Anderson
ICASSP 2020 (2020)
Preview abstract
We explore content-based representation learning strategies tailored for
large-scale, uncurated music collections that afford only weak supervision
through unstructured natural language metadata and co-listen statistics. At the
core is a hybrid training scheme that uses classification and metric learning
losses to incorporate both metadata-derived text labels and aggregate co-listen
supervisory signals into a single convolutional model. The resulting joint text
and audio content embedding defines a similarity metric and supports prediction
of semantic text labels using a vocabulary of unprecedented granularity, which
we refine using a novel word-sense disambiguation procedure. As input to simple
classifier architectures, our representation achieves state-of-the-art
performance on two music tagging benchmarks.
View details
Preview abstract
Deep learning approaches have recently achieved impressive performance on both audio source separation and sound classification. Most audio source separation approaches focus only on separating sources belonging to a restricted domain of source classes, such as speech and music. However, recent work has demonstrated the possibility of "universal sound separation", which aims to separate acoustic sources from an open domain, regardless of their class. In this paper, we utilize the semantic information learned by sound classifier networks trained on a vast amount of diverse sounds to improve universal sound separation. In particular, we show that semantic embeddings extracted from a sound classifier can be used to condition a separation network, providing it with useful additional information. This approach is especially useful in an iterative setup, where source estimates from an initial separation stage and their corresponding classifier-derived embeddings are fed to a second separation network. By performing a thorough hyperparameter search consisting of over a thousand experiments, we find that classifier embeddings from oracle clean sources provide nearly one dB of SNR gain, and our best iterative models achieve a significant fraction of this oracle performance, establishing a new state-of-the-art for universal sound separation.
View details
Learning Sound Event Classifiers From Web Audio With Noisy Labels
Frederic Font
Xavier Favory
Xavier Serra
Proceedings of ICASSP 2019 (to appear)
Preview abstract
As sound event classification moves towards larger datasets, issues of label noise become inevitable. Web sites can supply large volumes of user-contributed audio and metadata, but inferring labels from this metadata introduces errors due to unreliable inputs, and limitations in the mapping. There is, however, little research into the impact of these errors. To foster the investigation of label noise in sound event classification we present FSDnoisy18k, a dataset containing 44.2 hours of audio across 20 sound classes, including a small amount of manually-labeled data and a larger quantity of real-world noisy data. We characterize the label noise empirically, and provide a CNN baseline system. Experiments suggest that training with large amounts of noisy data can outperform training with smaller amounts of carefully-labeled data. We also show that noise-robust loss functions can be effective in improving performance in presence of corrupted labels.
View details