Florian Schroff
Florian Schroff is a software engineer at Google where he conducts applied research in the areas of computer vision and machine learning. His projects focus on describing people in images and videos.
Before joining Google in 2011, he completed a two-year postdoc at the UCSD vision group, where he conducted research in unconstrained face and object recognition.
Previously, he graduated in 2009 with a DPhil from the University of Oxford in the Visual Geometry Group. His thesis was titled Semantic Image Segmentation and Web-Supervised Visual Learning.
Authored Publications
Sort By
Unified Visual Relationship Detection with Vision and Language Models
Liangzhe Yuan
Boqing Gong
Yin Cui
International Conference on Computer Vision (ICCV) (2023)
Preview abstract
This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets. Merging labels spanning different datasets could be challenging due to inconsistent taxonomies. The issue is exacerbated in visual relationship detection when second-order visual semantics are introduced between pairs of objects. To address this challenge, we propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models (VLMs). VLMs provide well-aligned image and text embeddings, where similar relationships are optimized to be close to each other for semantic unification. Our bottom-up design enables the model to enjoy the benefit of training with both object detection and visual relationship datasets. Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model. UniVRD achieves 38.07 mAP on HICO-DET, outperforming the current best bottom-up HOI detector by 14.26 mAP. More importantly, we show that our unified detector performs as well as dataset-specific models in mAP, and achieves further improvements when we scale up the model. Our code will be made publicly available on GitHub.
View details
Learning to Generate Image Embeddings with User-level Differential Privacy
Maxwell D. Collins
Yuxiao Wang
Sewoong Oh
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2023) (to appear)
Preview abstract
We consider training feature extractors with user-level differential privacy to map images to embeddings from large-scale supervised data. To achieve user-level differential privacy, federated learning algorithms are extended and applied to aggregate user partitioned data, together with sensitivity control and noise addition. We demonstrate a variant of federated learning algorithm with partial aggregation and private reconstruction can achieve strong privacy utility trade-offs. When a large scale dataset is provided, it is possible to train feature extractors with both strong utility and privacy guarantees by combining techniques such as public pretraining, virtual clients, and partial aggregation.
View details
View-Invariant, Occlusion-Robust Probabilistic Embedding for Human Pose
Jennifer Jianing Sun
Jiaping Zhao
Liangzhe Yuan
Yuxiao Wang
Liang-Chieh Chen
International Journal of Computer Vision, 130 (2022), pp. 111-135
Preview abstract
Recognition of human poses and actions is crucial for autonomous systems to interact smoothly with people. However, cameras generally capture human poses in 2D as images and videos, which can have significant appearance variations across viewpoints that make the recognition tasks challenging. To address this, we explore recognizing similarity in 3D human body poses from 2D information, which has not been well-studied in existing works. Here, we propose an approach to learning a compact view-invariant embedding space from 2D body joint keypoints, without explicitly predicting 3D poses. Input ambiguities of 2D poses from projection and occlusion are difficult to represent through a deterministic mapping, and therefore we adopt a probabilistic formulation for our embedding space. Experimental results show that our embedding model achieves higher accuracy when retrieving similar poses across different camera views, in comparison with 3D pose estimation models. We also show that by training a simple temporal embedding model, we achieve superior performance on pose sequence retrieval and largely reduce the embedding dimension from stacking frame-based embeddings for efficient large-scale retrieval. Furthermore, in order to enable our embeddings to work with partially visible input, we further investigate different keypoint occlusion augmentation strategies during training. We demonstrate that these occlusion augmentations significantly improve retrieval performance on partial 2D input poses. Results on action recognition and video alignment demonstrate that using our embeddings without any additional training achieves competitive performance relative to other models specifically trained for each task.
View details
Contextualized Spatial-Temporal Contrastive Learning with Self-Supervision
Liangzhe Yuan
Rui Qian
Yin Cui
Boqing Gong
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022), pp. 13977-13986
Preview abstract
Modern self-supervised learning algorithms typically enforce persistency of instance representations across views. While being very effective on learning holistic image and video representations, such an objective becomes sub-optimal for learning spatio-temporally fine-grained features in videos, where scenes and instances evolve through space and time. In this paper, we present Contextualized Spatio-Temporal Contrastive Learning (ConST-CL) to effectively learn spatio-temporally fine-grained video representations via self-supervision. We first design a region-based pretext task which requires the model to transform in-stance representations from one view to another, guided by context features. Further, we introduce a simple network design that successfully reconciles the simultaneous learning process of both holistic and local representations. We evaluate our learned representations on a variety of downstream tasks and show that ConST-CL achieves competitive results on 6 datasets, including Kinetics, UCF, HMDB, AVA-Kinetics, AVA and OTB.
View details
Learning View-Disentangled Human Pose Representation by Contrastive Cross-View Mutual Information Maximization
Yuxiao Wang
Jiaping Zhao
Liangzhe Yuan
Jennifer Jianing Sun
Xi Peng
Dimitris N. Metaxas
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Preview abstract
We introduce a novel representation learning method to disentangle pose-dependent as well as view-dependent factors from 2D human poses. The method trains a network using cross-view mutual information maximization (CV-MIM) which maximizes mutual information of the same pose performed from different viewpoints in a contrastive learning manner. We further propose two regularization terms to ensure disentanglement and smoothness of the learned representations. The resulting pose representations can be used for cross-view action recognition. To evaluate the power of the learned representations, in addition to the conventional fully-supervised action recognition settings, we introduce a novel task called single-shot cross-view action recognition. This task trains models with actions from only one single viewpoint while models are evaluated on poses captured from all possible viewpoints. We evaluate the learned representations on standard benchmarks for action recognition, and show that (i) CV-MIM performs competitively compared with the state-of-the-art models in the fully-supervised scenarios;(ii) CV-MIM outperforms other competing methods by a large margin in the single-shot cross-view setting;(iii) and the learned representations can significantly boost the performance when reducing the amount of supervised training data. Our code is made publicly available at https://github. com/google-research/google-research/tree/master/poem.
View details
View-Invariant Probabilistic Embedding for Human Pose
Jennifer Jianing Sun
Jiaping Zhao
Liang-Chieh Chen
European Conference on Computer Vision (ECCV) (2020)
Preview abstract
Depictions of similar human body configurations can vary with changing viewpoints. Using only 2D information, we would like to enable vision algorithms to recognize similarity in human body poses across multiple views. This ability is useful for analyzing body movements and human behaviors in images and videos. In this paper, we propose an approach for learning a compact view-invariant embedding space from 2D joint keypoints alone, without explicitly predicting 3D poses. Since 2D poses are projected from 3D space, they have an inherent ambiguity, which is difficult to represent through a deterministic mapping. Hence, we use probabilistic embeddings to model this input uncertainty. Experimental results show that our embedding model achieves higher accuracy when retrieving similar poses across different camera views, in comparison with 2D-to-3D pose lifting models. We also demonstrate the effectiveness of applying our embeddings to view-invariant action recognition and video alignment. Our code is available at https://github.com/google-research/google-research/tree/master/poem.
View details
Preview abstract
Videos can evoke a range of affective responses in viewers. The ability to predict evoked affect from a video, before viewers watch the video, can help in content creation and video recommendation. We introduce the Evoked Expressions from Videos (EEV) dataset, a large-scale dataset for studying viewer responses to videos. Each video is annotated at 6 Hz with 15 continuous evoked expression labels, corresponding to the facial expression of viewers who reacted to the video. We use an expression recognition model within our data collection framework to achieve scalability. In total, there are 36.7 million annotations of viewer facial reactions to 23,574 videos (1,700 hours). We use a publicly available video corpus to obtain a diverse set of video content. We establish baseline performance on the EEV dataset using an existing multimodal recurrent model. Transfer learning experiments show an improvement in performance on the LIRIS-ACCEDE video dataset when pre-trained on EEV. We hope that the size and diversity of the EEV dataset will encourage further explorations in video understanding and affective computing. A subset of EEV is released at https://github.com/google-research-datasets/eev.
View details
Sixteen facial expressions occur in similar contexts worldwide
Alan Cowen
Dacher Keltner
Nature, 589 (2020), pp. 251-257
Preview abstract
Understanding the degree to which human facial expressions co-vary with specific social contexts across cultures is central to the theory that emotions enable adaptive responses to important challenges and opportunities. Concrete evidence linking social context to specific facial expressions is sparse and is largely based on survey-based approaches, which are often constrained by language and small sample sizes. Here, by applying machine-learning methods to real-world, dynamic behaviour, we ascertain whether naturalistic social contexts (for example, weddings or sporting competitions) are associated with specific facial expressions across different cultures. In two experiments using deep neural networks, we examined the extent to which 16 types of facial expression occurred systematically in thousands of contexts in 6 million videos from 144 countries. We found that each kind of facial expression had distinct associations with a set of contexts that were 70% preserved across 12 world regions. Consistent with these associations, regions varied in how frequently different facial expressions were produced as a function of which contexts were most salient. Our results reveal fine-grained patterns in human facial expressions that are preserved across the modern world.
View details
Modeling Uncertainty with Hedged Instance Embedding
Seong Joon Oh
Jiyan Pan
ICLR 2019 (2019)
Preview abstract
Instance embeddings are an efficient and versatile image representation that facilitates applications like recognition, verification, retrieval, and clustering. Many
metric learning methods represent the input as a single point in the embedding
space. Often the distance between points is used as a proxy for match confidence.
However, this can fail to represent uncertainty which can arise when the input is
ambiguous, e.g., due to occlusion or blurriness. This work addresses this issue and
explicitly models the uncertainty by “hedging” the location of each input in the
embedding space. We introduce the hedged instance embedding (HIB) in which
embeddings are modeled as random variables and the model is trained under the
variational information bottleneck principle (Alemi et al., 2016; Achille & Soatto,
2018). Empirical results on our new N-digit MNIST dataset show that our method
leads to the desired behavior of “hedging its bets” across the embedding space
upon encountering ambiguous inputs. This results in improved performance for
image matching and classification tasks, more structure in the learned embedding
space, and an ability to compute a per-exemplar uncertainty measure which is
correlated with downstream performance.
View details
FEELVOS: Fast End-to-End Embedding Learning for Video Object Segmentation
Yuning Chai
Bastian Leibe
Liang-chieh Chen
International Conference on Computer Vision and Pattern Recognition (CVPR) (2019) (to appear)
Preview abstract
Recently, there has been a lot of progress for video object segmentation (VOS). However, many of the most successful methods are overly complicated, heavily rely on fine-tuning on the first frame, and/or are slow, and are hence of limited practical use. In this work, we propose FEELVOS as a simple and fast method which does not rely on fine-tuning. In order to segment a video frame, FEELVOS uses a semantic pixel-wise embedding together with a global and a local matching mechanism to transfer information from the first frame and from the previous frame of the video to the current frame. In contrast to previous work, our embedding is only used as an internal guidance of a convolutional network. Our novel dynamic segmentation head allows us to train the network including the embedding end-to-end for the multiple object segmentation task. We achieve a new state of the art in video object segmentation without fine-tuning on the DAVIS 2017 validation set with a J&F measure of 69.0%.
View details