Jarrod R. McClean
Jarrod is a research scientist in the Google Quantum Artificial Intelligence laboratory. He received his PhD in Chemical Physics from Harvard University specializing in quantum chemistry and quantum computation supported by the US Department of Energy as a Computational Science Graduate Fellow. His research interests broadly include quantum computation, quantum chemistry, numerical methods, and information sparsity.
Research Areas
Authored Publications
Sort By
Preview abstract
The application of quantum computers to machine learning tasks is an exciting potential direction to explore in search of quantum advantage. In the absence of large quantum computers to empirically evaluate performance, theoretical frameworks such as the quantum probably approximately correct (PAC) and quantum statistical query (QSQ) models have been proposed to study quantum algorithms for learning classical functions.
Despite numerous works investigating quantum advntage in these models, we nevertheless only understand it at two extremes: either exponential quantum advantages for uniform input distributions or no advantage for potentially adversarial distributions.
In this work, we study the gap between these two regimes by designing an efficient quantum algorithm for learning periodic neurons in the QSQ model over a broad range of non-uniform distributions, which includes Gaussian, generalized Gaussian, and logistic distributions.
To our knowledge, our work is also the first result in quantum learning theory for classical functions that explicitly considers real-valued functions.
Recent advances in classical learning theory prove that learning periodic neurons is hard for any classical gradient-based algorithm, giving us an exponential quantum advantage over such algorithms, which are the standard workhorses of machine learning.
Moreover, in some parameter regimes, the problem remains hard for classical statistical query algorithms and even general classical algorithms learning under small amounts of noise.
View details
Preview abstract
The application of quantum computers to machine learning tasks is an exciting potential direction to explore in search of quantum advantage. In the absence of large quantum computers to empirically evaluate performance, theoretical frameworks such as the quantum probably approximately correct (PAC) and quantum statistical query (QSQ) models have been proposed to study quantum algorithms for learning classical functions.
Despite numerous works investigating quantum advntage in these models, we nevertheless only understand it at two extremes: either exponential quantum advantages for uniform input distributions or no advantage for potentially adversarial distributions.
In this work, we study the gap between these two regimes by designing an efficient quantum algorithm for learning periodic neurons in the QSQ model over a broad range of non-uniform distributions, which includes Gaussian, generalized Gaussian, and logistic distributions.
To our knowledge, our work is also the first result in quantum learning theory for classical functions that explicitly considers real-valued functions.
Recent advances in classical learning theory prove that learning periodic neurons is hard for any classical gradient-based algorithm, giving us an exponential quantum advantage over such algorithms, which are the standard workhorses of machine learning.
Moreover, in some parameter regimes, the problem remains hard for classical statistical query algorithms and even general classical algorithms learning under small amounts of noise.
View details
Preview abstract
Protecting user privacy in financial transactions is desirable, yet in the classical world it is effectively impossible without hardware assumptions. Most existing quantum money schemes also fail to guarantee anonymity. We introduce a construction of single-use quantum tokens that give users the ability to detect whether the issuing authority is tracking them, for which we prove unconditional security. Our tokens do not require quantum communication from the users themselves, making them relatively practical to deploy.
We discuss potential applications including one-time payment tokens, anonymous one-time pads and voting.
View details
Generative Quantum Advantage for Classical and Quantum Problems
Robert Huang
Michael Broughton
Norhan Eassa
arXiv:2509.09033 (2025)
Preview abstract
Recent breakthroughs in generative machine learning, powered by massive computational resources, have demonstrated unprecedented human-like capabilities. While beyond-classical quantum experiments can generate samples from classically intractable distributions, their complexity has thwarted all efforts toward efficient learning. This challenge has hindered demonstrations of generative quantum advantage: the ability of quantum computers to learn and generate desired outputs substantially better than classical computers. We resolve this challenge by introducing families of generative quantum models that are hard to simulate classically, are efficiently trainable, exhibit no barren plateaus or proliferating local minima, and can learn to generate distributions beyond the reach of classical computers. Using a 68-qubit superconducting quantum processor, we demonstrate these capabilities in two scenarios: learning classically intractable probability distributions and learning quantum circuits for accelerated physical simulation. Our results establish that both learning and sampling can be performed efficiently in the beyond-classical regime, opening new possibilities for quantum-enhanced generative models with provable advantage.
View details
Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories
Tyler Cochran
Bernhard Jobst
Yuri Lensky
Gaurav Gyawali
Norhan Eassa
Melissa Will
Aaron Szasz
Dmitry Abanin
Rajeev Acharya
Laleh Beni
Trond Andersen
Markus Ansmann
Frank Arute
Kunal Arya
Abe Asfaw
Juan Atalaya
Brian Ballard
Alexandre Bourassa
Michael Broughton
David Browne
Brett Buchea
Bob Buckley
Tim Burger
Nicholas Bushnell
Anthony Cabrera
Juan Campero
Hung-Shen Chang
Jimmy Chen
Benjamin Chiaro
Jahan Claes
Agnetta Cleland
Josh Cogan
Roberto Collins
Paul Conner
William Courtney
Alex Crook
Ben Curtin
Sayan Das
Laura De Lorenzo
Agustin Di Paolo
Paul Donohoe
ILYA Drozdov
Andrew Dunsworth
Alec Eickbusch
Aviv Elbag
Mahmoud Elzouka
Vinicius Ferreira
Ebrahim Forati
Austin Fowler
Brooks Foxen
Suhas Ganjam
Robert Gasca
Élie Genois
William Giang
Dar Gilboa
Raja Gosula
Alejo Grajales Dau
Dietrich Graumann
Alex Greene
Steve Habegger
Monica Hansen
Sean Harrington
Paula Heu
Oscar Higgott
Jeremy Hilton
Robert Huang
Ashley Huff
Bill Huggins
Cody Jones
Chaitali Joshi
Pavol Juhas
Hui Kang
Amir Karamlou
Kostyantyn Kechedzhi
Trupti Khaire
Bryce Kobrin
Alexander Korotkov
Fedor Kostritsa
John Mark Kreikebaum
Vlad Kurilovich
Dave Landhuis
Tiano Lange-Dei
Brandon Langley
Kim Ming Lau
Justin Ledford
Kenny Lee
Loick Le Guevel
Wing Li
Alexander Lill
Will Livingston
Aditya Locharla
Daniel Lundahl
Aaron Lunt
Sid Madhuk
Ashley Maloney
Salvatore Mandra
Leigh Martin
Orion Martin
Cameron Maxfield
Seneca Meeks
Anthony Megrant
Reza Molavi
Sebastian Molina
Shirin Montazeri
Ramis Movassagh
Charles Neill
Michael Newman
Murray Ich Nguyen
Chia Ni
Kris Ottosson
Alex Pizzuto
Rebecca Potter
Orion Pritchard
Ganesh Ramachandran
Matt Reagor
David Rhodes
Gabrielle Roberts
Kannan Sankaragomathi
Henry Schurkus
Mike Shearn
Aaron Shorter
Noah Shutty
Vladimir Shvarts
Vlad Sivak
Spencer Small
Clarke Smith
Sofia Springer
George Sterling
Jordan Suchard
Alex Sztein
Doug Thor
Mert Torunbalci
Abeer Vaishnav
Justin Vargas
Sergey Vdovichev
Guifre Vidal
Steven Waltman
Shannon Wang
Brayden Ware
Kristi Wong
Cheng Xing
Jamie Yao
Ping Yeh
Bicheng Ying
Juhwan Yoo
Grayson Young
Yaxing Zhang
Ningfeng Zhu
Yu Chen
Vadim Smelyanskiy
Adam Gammon-Smith
Frank Pollmann
Michael Knap
Nature, 642 (2025), 315–320
Preview abstract
Lattice gauge theories (LGTs) can be used to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging, as it requires solving many-body problems that are generally beyond perturbative limits. Here we investigate the dynamics of local excitations in a LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit that prepares low-energy states that have a large overlap with the ground state; then we create charge excitations with local gates and simulate their quantum dynamics by means of a discretized time evolution. As the electric field coupling constant is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the electric field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT, from which we uncover two distinct regimes inside the confining phase: for weak confinement, the string fluctuates strongly in the transverse direction, whereas for strong confinement, transverse fluctuations are effectively frozen. We also demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a new set of techniques for investigating emergent excitations and string dynamics.
View details
Preview abstract
The quest to identify quantum advantages, where quantum physics truly outperforms classical physics, lies at the heart of quantum technology. While quantum devices promise extraordinary capabilities, from exponential computational speedups to unprecedented measurement precision, distinguishing genuine advantages from mere illusions remains a formidable challenge. In this endeavor, quantum theorists are like prophets trying to foretell a future where quantum technologies reign supreme. Yet, the boundary between visionary insight and unfounded fantasy is perilously thin. In this perspective, we explore the properties defining an ideal quantum advantage and examine our mathematical tools for navigating the vast world of quantum advantages across computation, learning, sensing, communication, and beyond. We show that some quantum advantages are inherently unpredictable using classical resources alone, suggesting a landscape far richer than what we can currently foresee. While mathematical rigor remains our indispensable guide in this exploration, the ultimate power of quantum technologies may emerge from the quantum advantages we cannot yet conceive.
View details
Preview abstract
The quest to identify quantum advantages, where quantum physics truly outperforms classical physics, lies at the heart of quantum technology. While quantum devices promise extraordinary capabilities, from exponential computational speedups to unprecedented measurement precision, distinguishing genuine advantages from mere illusions remains a formidable challenge. In this endeavor, quantum theorists are like prophets trying to foretell a future where quantum technologies reign supreme. Yet, the boundary between visionary insight and unfounded fantasy is perilously thin. In this perspective, we explore the properties defining an ideal quantum advantage and examine our mathematical tools for navigating the vast world of quantum advantages across computation, learning, sensing, communication, and beyond. We show that some quantum advantages are inherently unpredictable using classical resources alone, suggesting a landscape far richer than what we can currently foresee. While mathematical rigor remains our indispensable guide in this exploration, the ultimate power of quantum technologies may emerge from the quantum advantages we cannot yet conceive.
View details
Preview abstract
The quest to identify quantum advantages, where quantum physics truly outperforms classical physics, lies at the heart of quantum technology. While quantum devices promise extraordinary capabilities, from exponential computational speedups to unprecedented measurement precision, distinguishing genuine advantages from mere illusions remains a formidable challenge. In this endeavor, quantum theorists are like prophets trying to foretell a future where quantum technologies reign supreme. Yet, the boundary between visionary insight and unfounded fantasy is perilously thin. In this perspective, we explore the properties defining an ideal quantum advantage and examine our mathematical tools for navigating the vast world of quantum advantages across computation, learning, sensing, communication, and beyond. We show that some quantum advantages are inherently unpredictable using classical resources alone, suggesting a landscape far richer than what we can currently foresee. While mathematical rigor remains our indispensable guide in this exploration, the ultimate power of quantum technologies may emerge from the quantum advantages we cannot yet conceive.
View details
Visualizing dynamics of charges and strings in (2 + 1)D lattice gauge theories
Tyler Cochran
Bernhard Jobst
Yuri Lensky
Gaurav Gyawali
Norhan Eassa
Melissa Will
Aaron Szasz
Dmitry Abanin
Rajeev Acharya
Laleh Beni
Trond Andersen
Markus Ansmann
Frank Arute
Kunal Arya
Abe Asfaw
Juan Atalaya
Brian Ballard
Alexandre Bourassa
Michael Broughton
David Browne
Brett Buchea
Bob Buckley
Tim Burger
Nicholas Bushnell
Anthony Cabrera
Juan Campero
Hung-Shen Chang
Jimmy Chen
Benjamin Chiaro
Jahan Claes
Agnetta Cleland
Josh Cogan
Roberto Collins
Paul Conner
William Courtney
Alex Crook
Ben Curtin
Sayan Das
Laura De Lorenzo
Agustin Di Paolo
Paul Donohoe
ILYA Drozdov
Andrew Dunsworth
Alec Eickbusch
Aviv Elbag
Mahmoud Elzouka
Vinicius Ferreira
Ebrahim Forati
Austin Fowler
Brooks Foxen
Suhas Ganjam
Robert Gasca
Élie Genois
William Giang
Dar Gilboa
Raja Gosula
Alejo Grajales Dau
Dietrich Graumann
Alex Greene
Steve Habegger
Monica Hansen
Sean Harrington
Paula Heu
Oscar Higgott
Jeremy Hilton
Robert Huang
Ashley Huff
Bill Huggins
Cody Jones
Chaitali Joshi
Pavol Juhas
Hui Kang
Amir Karamlou
Kostyantyn Kechedzhi
Trupti Khaire
Bryce Kobrin
Alexander Korotkov
Fedor Kostritsa
John Mark Kreikebaum
Vlad Kurilovich
Dave Landhuis
Tiano Lange-Dei
Brandon Langley
Kim Ming Lau
Justin Ledford
Kenny Lee
Loick Le Guevel
Wing Li
Alexander Lill
Will Livingston
Aditya Locharla
Daniel Lundahl
Aaron Lunt
Sid Madhuk
Ashley Maloney
Salvatore Mandra
Leigh Martin
Orion Martin
Cameron Maxfield
Seneca Meeks
Anthony Megrant
Reza Molavi
Sebastian Molina
Shirin Montazeri
Ramis Movassagh
Charles Neill
Michael Newman
Murray Ich Nguyen
Chia Ni
Kris Ottosson
Alex Pizzuto
Rebecca Potter
Orion Pritchard
Ganesh Ramachandran
Matt Reagor
David Rhodes
Gabrielle Roberts
Kannan Sankaragomathi
Henry Schurkus
Mike Shearn
Aaron Shorter
Noah Shutty
Vladimir Shvarts
Vlad Sivak
Spencer Small
Clarke Smith
Sofia Springer
George Sterling
Jordan Suchard
Alex Sztein
Doug Thor
Mert Torunbalci
Abeer Vaishnav
Justin Vargas
Sergey Vdovichev
Guifre Vidal
Steven Waltman
Shannon Wang
Brayden Ware
Kristi Wong
Cheng Xing
Jamie Yao
Ping Yeh
Bicheng Ying
Juhwan Yoo
Grayson Young
Yaxing Zhang
Ningfeng Zhu
Yu Chen
Vadim Smelyanskiy
Adam Gammon-Smith
Frank Pollmann
Michael Knap
Nature, 642 (2025), 315–320
Preview abstract
Lattice gauge theories (LGTs) can be used to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging, as it requires solving many-body problems that are generally beyond perturbative limits. Here we investigate the dynamics of local excitations in a LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit that prepares low-energy states that have a large overlap with the ground state; then we create charge excitations with local gates and simulate their quantum dynamics by means of a discretized time evolution. As the electric field coupling constant is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the electric field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT, from which we uncover two distinct regimes inside the confining phase: for weak confinement, the string fluctuates strongly in the transverse direction, whereas for strong confinement, transverse fluctuations are effectively frozen. We also demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a new set of techniques for investigating emergent excitations and string dynamics.
View details
Stable quantum-correlated many-body states through engineered dissipation
Xiao Mi
Alexios Michailidis
Sara Shabani
Jerome Lloyd
Rajeev Acharya
Igor Aleiner
Trond Andersen
Markus Ansmann
Frank Arute
Kunal Arya
Abe Asfaw
Juan Atalaya
Gina Bortoli
Alexandre Bourassa
Leon Brill
Michael Broughton
Bob Buckley
Tim Burger
Nicholas Bushnell
Jimmy Chen
Benjamin Chiaro
Desmond Chik
Charina Chou
Josh Cogan
Roberto Collins
Paul Conner
William Courtney
Alex Crook
Ben Curtin
Alejo Grajales Dau
Dripto Debroy
Agustin Di Paolo
ILYA Drozdov
Andrew Dunsworth
Lara Faoro
Edward Farhi
Reza Fatemi
Vinicius Ferreira
Ebrahim Forati
Austin Fowler
Brooks Foxen
Élie Genois
William Giang
Dar Gilboa
Raja Gosula
Steve Habegger
Michael Hamilton
Monica Hansen
Sean Harrington
Paula Heu
Markus Hoffmann
Trent Huang
Ashley Huff
Bill Huggins
Sergei Isakov
Justin Iveland
Cody Jones
Pavol Juhas
Kostyantyn Kechedzhi
Marika Kieferova
Alexei Kitaev
Andrey Klots
Alexander Korotkov
Fedor Kostritsa
John Mark Kreikebaum
Dave Landhuis
Pavel Laptev
Kim Ming Lau
Lily Laws
Joonho Lee
Kenny Lee
Yuri Lensky
Alexander Lill
Wayne Liu
Aditya Locharla
Orion Martin
Amanda Mieszala
Shirin Montazeri
Alexis Morvan
Ramis Movassagh
Wojtek Mruczkiewicz
Charles Neill
Ani Nersisyan
Michael Newman
JiunHow Ng
Murray Ich Nguyen
Tom O'Brien
Alex Opremcak
Andre Petukhov
Rebecca Potter
Leonid Pryadko
Charles Rocque
Negar Saei
Kannan Sankaragomathi
Henry Schurkus
Christopher Schuster
Mike Shearn
Aaron Shorter
Noah Shutty
Vladimir Shvarts
Jindra Skruzny
Clarke Smith
Rolando Somma
George Sterling
Doug Strain
Marco Szalay
Alfredo Torres
Guifre Vidal
Cheng Xing
Jamie Yao
Ping Yeh
Juhwan Yoo
Grayson Young
Yaxing Zhang
Ningfeng Zhu
Jeremy Hilton
Anthony Megrant
Yu Chen
Vadim Smelyanskiy
Dmitry Abanin
Science, 383 (2024), pp. 1332-1337
Preview abstract
Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
View details