
Lakshit
Lakshit Arora is an Engineering Manager at Google leading YouTube’s growth platform. His areas of expertise include Machine Learning, Artificial Intelligence, Search and Discovery, Web Applications and general Software Development. He leads efforts that drive significant user engagement and revenue growth for YouTube. Before YouTube, Lakshit worked on patented algorithms that empower Google Drive Search. Outside of work, Lakshit also serves on the Technical Program Committee for top Computer Science conferences and journals as well as on the judging committee for top IT industry innovation awards.
Authored Publications
Sort By
Opportunities and Applications of GenAI in Smart Cities: A User-Centric Survey
Ankit Shetgaonkar
Shashank Kapoor
Aman Raj
2025
Preview abstract
The proliferation of IoT in cities, combined with Digital Twins, creates a rich data foundation for Smart Cities aimed at improving urban life and operations. Generative AI (GenAI) significantly enhances this potential, moving beyond traditional AI analytics by processing multimodal content and generating novel outputs like text and simulations. Using specialized or foundational models, GenAI's natural language abilities such as Natural Language Understanding (NLU) and Generation (NLG) can power tailored applications and unified interfaces, dramatically lowering barriers for users interacting with complex smart city systems. In this paper, we focus on GenAI applications based on conversational interfaces within the context of three critical user archetypes in a Smart City - Citizens, Operators and Planners. We identify and review GenAI models and techniques that have been proposed or deployed for various urban subsystems in the contexts of these user archetypes. We also consider how GenAI can be built on the existing data foundation of official city records, IoT data streams and Urban Digital Twins. We believe this work represents the first comprehensive summarization of GenAI techniques for Smart Cities from the lens of the critical users in a Smart City.
View details
Optimizing LLMs for Resource-Constrained Environments: A Survey of Model Compression Techniques
Shashank Kapoor
Aman Raj
Ankit Shetgaonkar
2025
Preview abstract
Large Language Models (LLMs) are revolutionizing many areas of AI, but their substantial resource requirements limit their deployment on mobile and edge devices. This survey paper provides a comprehensive overview of techniques for compressing LLMs to enable efficient inference in resource-constrained environments. We examine three primary approaches: knowledge distillation, model quantization and model pruning. For each technique, we discuss the underlying principles, present different forms, and provide examples of successful applications. We also briefly discuss complementary techniques like mixture-of-experts and early exit strategies and highlight the promising future directions. We aim to provide a valuable resource for both researchers and practitioners seeking to optimize LLMs for edge deployment. To the best of our knowledge, this is the first paper that provides a focused survey of LLM compression techniques from the lens of resource-constrained environments.
View details
AI and Generative AI Transforming Disaster Management: A Survey of Damage Assessment and Response Techniques
Aman Raj
Shashank Kapoor
Ankit Shetgaonkar
2025
Preview abstract
Natural disasters, including earthquakes, wildfires and cyclones, bear a huge risk on human lives as well as infrastructure assets. An effective response to disaster depends on the ability to rapidly and efficiently assess the intensity of damage. Artificial Intelligence (AI) and Generative Artificial Intelligence (GenAI) presents a breakthrough solution, capable of combining knowledge from multiple types and sources of data, simulating realistic scenarios of disaster, and identifying emerging trends at a speed previously unimaginable. In this paper, we present a comprehensive review on the prospects of AI and GenAI in damage assessment for various natural disasters, highlighting both its strengths and limitations. We talk about its application to multimodal data such as text, image, video, and audio, and also cover major issues of data privacy, security, and ethical use of the technology during crises. The paper also recognizes the threat of Generative AI misuse, in the form of dissemination of misinformation and for adversarial attacks. Finally, we outline avenues of future research, emphasizing the need for secure, reliable, and ethical Generative AI systems for disaster management in general. We believe that this work represents the first comprehensive survey of Gen-AI techniques being used in the field of Disaster Assessment and Response.
View details
Mitigating Clinician Information Overload: Generative AI for Integrated EHR and RPM Data Analysis
Ankit Shetgaonkar
Shashank Kapoor
Aman Raj
2025
Preview abstract
Generative AI (GenAI), particularly Large Language Models (LLMs), offer powerful capabilities for interpreting the complex data landscape in healthcare. In this paper, we present a comprehensive overview of the capabilities, requirements and applications of GenAI for deriving clinical insights and improving clinical efficiency. We first provide some background on the forms and sources of patient data, namely real-time Remote Patient Monitoring (RPM) streams and traditional Electronic Health Records (EHR). The sheer volume and heterogeneity of this combined data present significant challenges to clinicians and contribute to information overload.
In addition, we explore the potential of LLM-powered applications for improving clinical efficiency. These applications can enhance navigation of longitudinal patient data and provide actionable clinical decision support through natural language dialogue. We discuss the opportunities this presents for streamlining clinician workflows and personalizing care, alongside critical challenges such as data integration complexity, ensuring data quality and RPM data reliability, maintaining patient privacy, validating AI outputs for clinical safety, mitigating bias, and ensuring clinical acceptance. We believe this work represents the first summarization of GenAI techniques for managing clinician data overload due to combined RPM / EHR data complexities.
View details
Explainable Artificial Intelligence Techniques for Software Development Lifecycle: A phase-specific survey
Shashank Kapoor
Aman Raj
Ankit Shetgaonkar
2025
Preview abstract
Artificial Intelligence (AI) is rapidly expanding and integrating more into daily life to automate tasks, guide decision-making and enhance efficiency. However, complex AI models, which make decisions without providing clear explanations (known as the "black-box problem"), currently restrict trust and widespread adoption of AI.
Explainable Artificial intelligence (XAI) has emerged to address the black-box problem of making AI systems more interpretable and transparent so stakeholders can trust, verify, and act upon AI-based outcomes. Researcher have come up with various techniques to foster XAI in Software Development Lifecycle. However, there are gaps in the application of XAI in Software Engineering phases. Literature shows that 68% of XAI in Software Engineering research focused on maintenance as opposed to 8% on software management and requirements [7].
In this paper we present a comprehensive survey of the applications of XAI methods (e.g., concept-based explanations, LIME/SHAP, rule extraction, attention mechanisms, counterfactual explanations, example-based explanations) to the different phases of Software Development Lifecycles (SDLC) mainly requirements elicitation, design and development, testing and deployment, and evolution.
To the best of our knowledge, this paper presents the first comprehensive survey of XAI techniques for every phase of the Software Development Life Cycle (SDLC). In doing so, we aim to promote explainable AI in Software Engineering and facilitate the use of complex AI models in AI-driven software development.
View details
Adversarial Attacks in Multimodal Systems: A Practitioner's Survey
Shashank Kapoor
Ankit Shetgaonkar
Aman Raj
2025
Preview abstract
Multimodal models represent a significant advancement in Artificial Intelligence. A single model is trained to understand unstructured modalities: text, image, video, and audio. Open-source variants of multimodal models have made these breakthroughs further accessible. ML practitioners adopt, finetune, and deploy open-source models in real-world applications. However, considering the vast landscape of adversarial attacks across these modalities, these models also inherit vulnerabilities of all the modalities, and eventually, the adversarial threat amplifies. While broad research is available on possible attacks within or across these modalities, a practitioner-focused view of outlining attack types remains absent in the multimodal world. This paper addresses the gap by surveying adversarial attacks targeting all four modalities: text, image, video, and audio. This survey provides a view of the adversarial attack landscape and presents how multimodal adversarial threats have evolved. To the best of our knowledge, this survey is the first comprehensive summarization of the threat landscape in the multimodal world.
View details