Ryan Babbush
Ryan is the director of the Quantum Algorithm & Applications Team at Google. The mandate of this research team is to develop new and more efficient quantum algorithms, discover and analyze new applications of quantum computers, build and open source tools for accelerating quantum algorithms research and compilation, and to design algorithmic experiments to execute on existing and future fault-tolerant quantum devices.
Authored Publications
Sort By
Optimization by Decoded Quantum Interferometry
Stephen Jordan
Mary Wootters
Alexander Schmidhuber
Robbie King
Sergei Isakov
Nature, 646 (2025), 831–836
Preview abstract
Achieving superpolynomial speed-ups for optimization has long been a central goal for quantum algorithms. Here we introduce decoded quantum interferometry (DQI), a quantum algorithm that uses the quantum Fourier transform to reduce optimization problems to decoding problems. When approximating optimal polynomial fits over finite fields, DQI achieves a superpolynomial speed-up over known classical algorithms. The speed-up arises because the algebraic structure of the problem is reflected in the decoding problem, which can be solved efficiently. We then investigate whether this approach can achieve a speed-up for optimization problems that lack an algebraic structure but have sparse clauses. These problems reduce to decoding low-density parity-check codes, for which powerful decoders are known. To test this, we construct a max-XORSAT instance for which DQI finds an approximate optimum substantially faster than general-purpose classical heuristics, such as simulated annealing. Although a tailored classical solver can outperform DQI on this instance, our results establish that combining quantum Fourier transforms with powerful decoding primitives provides a promising new path towards quantum speed-ups for hard optimization problems.
View details
Preview abstract
We describe an efficient quantum algorithm for solving the linear matrix equation AX+XB=C, where A, B, and C are given complex matrices and X is unknown. This is known as the Sylvester equation, a fundamental equation with applications in control theory and physics. Our approach constructs the solution matrix X/x in a block-encoding, where x is a rescaling factor needed for normalization. This allows us to obtain certain properties of the entries of X exponentially faster than would be possible from preparing X as a quantum state. The query and gate complexities of the quantum circuit that implements this block-encoding are almost linear in a condition number that depends on A and B, and depend logarithmically in the dimension and inverse error. We show how our quantum circuits can solve BQP-complete problems efficiently, discuss potential applications and extensions of our approach, its connection to Riccati equation, and comment on open problems.
View details
Quartic Quantum Speedups for Planted Inference Problems
Alexander Schmidhuber
Ryan O'Donnell
Physical Review X, 15 (2025), pp. 021077
Preview abstract
We describe a quantum algorithm for the Planted Noisy kXOR problem (also known as sparse Learning Parity with Noise) that achieves a nearly quartic (4th power) speedup over the best known classical algorithm while also only using logarithmically many qubits. Our work generalizes and simplifies prior work of Hastings, by building on his quantum algorithm for the Tensor Principal Component Analysis (PCA) problem. We achieve our quantum speedup using a general framework based on the Kikuchi Method (recovering the quartic speedup for Tensor PCA), and we anticipate it will yield similar speedups for further planted inference problems. These speedups rely on the fact that planted inference problems naturally instantiate the Guided Sparse Hamiltonian problem. Since the Planted Noisy kXOR problem has been used as a component of certain cryptographic constructions, our work suggests that some of these are susceptible to super-quadratic quantum attacks.
View details
Preview abstract
Given copies of a quantum state $\rho$, a shadow tomography protocol aims to learn all expectation values from a fixed set of observables, to within a given precision $\epsilon$. We say that a shadow tomography protocol is \textit{triply efficient} if it is sample- and time-efficient, and only employs measurements that entangle a constant number of copies of $\rho$ at a time. The classical shadows protocol based on random single-copy measurements is triply efficient for the set of local Pauli observables. This and other protocols based on random single-copy Clifford measurements can be understood as arising from fractional colorings of a graph $G$ that encodes the commutation structure of the set of observables. Here we describe a framework for two-copy shadow tomography that uses an initial round of Bell measurements to reduce to a fractional coloring problem in an induced subgraph of $G$ with bounded clique number. This coloring problem can be addressed using techniques from graph theory known as \textit{chi-boundedness}. Using this framework we give the first triply efficient shadow tomography scheme for the set of local fermionic observables, which arise in a broad class of interacting fermionic systems in physics and chemistry. We also give a triply efficient scheme for the set of all $n$-qubit Pauli observables. Our protocols for these tasks use two-copy measurements, which is necessary: sample-efficient schemes are provably impossible using only single-copy measurements. Finally, we give a shadow tomography protocol that compresses an $n$-qubit quantum state into a $\poly(n)$-sized classical representation, from which one can extract the expected value of any of the $4^n$ Pauli observables in $\poly(n)$ time, up to a small constant error.
View details
Fast electronic structure quantum simulation by spectrum amplification
Guang Hao Low
Robbie King
Dominic Berry
Qiushi Han
Albert Eugene DePrince III
Alec White
Rolando Somma
arXiv:2502.15882 (2025)
Preview abstract
The most advanced techniques using fault-tolerant quantum computers to estimate the ground-state energy of a chemical Hamiltonian involve compression of the Coulomb operator through tensor factorizations, enabling efficient block-encodings of the Hamiltonian. A natural challenge of these methods is the degree to which block-encoding costs can be reduced. We address this challenge through the technique of spectrum amplification, which magnifies the spectrum of the low-energy states of Hamiltonians that can be expressed as sums of squares. Spectrum amplification enables estimating ground-state energies with significantly improved cost scaling in the block encoding normalization factor $\Lambda$ to just $\sqrt{2\Lambda E_{\text{gap}}}$, where $E_{\text{gap}} \ll \Lambda$ is the lowest energy of the sum-of-squares Hamiltonian. To achieve this, we show that sum-of-squares representations of the electronic structure Hamiltonian are efficiently computable by a family of classical simulation techniques that approximate the ground-state energy from below. In order to further optimize, we also develop a novel factorization that provides a trade-off between the two leading Coulomb integral factorization schemes-- namely, double factorization and tensor hypercontraction-- that when combined with spectrum amplification yields a factor of 4 to 195 speedup over the state of the art in ground-state energy estimation for models of Iron-Sulfur complexes and a CO$_{2}$-fixation catalyst.
View details
Shadow Hamiltonian Simulation
Rolando Somma
Robbie King
Tom O'Brien
Nature Communications, 16 (2025), pp. 2690
Preview abstract
Simulating quantum dynamics is one of the most important applications of quantum computers. Traditional approaches for quantum simulation involve preparing the full evolved state of the system and then measuring some physical quantity. Here, we present a different and novel approach to quantum simulation that uses a compressed quantum state that we call the "shadow state". The amplitudes of this shadow state are proportional to the time-dependent expectations of a specific set of operators of interest, and it evolves according to its own Schrödinger equation. This evolution can be simulated on a quantum computer efficiently under broad conditions. Applications of this approach to quantum simulation problems include simulating the dynamics of exponentially large systems of free fermions or free bosons, the latter example recovering a recent algorithm for simulating exponentially many classical harmonic oscillators. These simulations are hard for classical methods and also for traditional quantum approaches, as preparing the full states would require exponential resources. Shadow Hamiltonian simulation can also be extended to simulate expectations of more complex operators such as two-time correlators or Green's functions, and to study the evolution of operators themselves in the Heisenberg picture.
View details
Preview abstract
We describe an efficient quantum algorithm for solving the linear matrix equation AX+XB=C, where A, B and C are given complex matrices and X is unknown. This is known as the Sylvester equation, a fundamental equation with applications in control theory and physics. Rather than encoding the solution in a quantum state in a fashion analogous to prior quantum linear algebra solvers, our approach constructs the solution matrix X in a block-encoding, rescaled by some factor. This allows us to obtain certain properties of the entries of X exponentially faster than would be possible from preparing X as a quantum state. The query and gate complexities of the quantum circuit that implements this block-encoding are almost linear in a condition number that depends on A and B, and depend logarithmically in the dimension and inverse error. We show how our quantum circuits can solve BQP-complete problems efficiently, discuss potential applications and extensions of our approach, its connection to Riccati equation, and comment on open problems.
View details
Rapid Initial-State Preparation for the Quantum Simulation of Strongly Correlated Molecules
Dominic Berry
Yu Tong
Alec White
Tae In Kim
Lin Lin
Seunghoon Lee
Garnet Chan
PRX Quantum, 6 (2025), pp. 020327
Preview abstract
Studies on quantum algorithms for ground-state energy estimation often assume perfect ground-state preparation; however, in reality the initial state will have imperfect overlap with the true ground state. Here, we address that problem in two ways: by faster preparation of matrix-product-state (MPS) approximations and by more efficient filtering of the prepared state to find the ground-state energy. We show how to achieve unitary synthesis with a Toffoli complexity about 7 × lower than that in prior work and use that to derive a more efficient MPS-preparation method. For filtering, we present two different approaches: sampling and binary search. For both, we use the theory of window functions to avoid large phase errors and minimize the complexity. We find that the binary-search approach provides better scaling with the overlap at the cost of a larger constant factor, such that it will be preferred for overlaps less than about 0.003. Finally, we estimate the total resources to perform ground-state energy estimation of Fe-S cluster systems, including the FeMo cofactor by estimating the overlap of different MPS initial states with potential ground states of the FeMo cofactor using an extrapolation procedure. With a modest MPS bond dimension of 4000, our procedure produces an estimate of approximately 0.9 overlap squared with a candidate ground state of the FeMo cofactor, producing a total resource estimate of 7.3e10 Toffoli gates; neglecting the search over candidates and assuming the accuracy of the extrapolation, this validates prior estimates that have used perfect ground-state overlap. This presents an example of a practical path to prepare states of high overlap in a challenging-to-compute chemical system.
View details
Preview abstract
The solution of linear systems of equations is the basis of many other quantum algorithms, and recent results provided an algorithm with optimal scaling in both the condition number κ and the allowable error ϵ [PRX Quantum 3, 0403003 (2022)]. That work was based on the discrete adiabatic theorem, and worked out an explicit constant factor for an upper bound on the complexity. Here we show via numerical testing on random matrices that the constant factor is in practice about 1,200 times smaller than the upper bound found numerically in the previous results. That means that this approach is far more efficient than might naively be expected from the upper bound. In particular, it is over an order of magnitude more efficient than using a randomized approach from [arXiv:2305.11352] that claimed to be more efficient.
View details
Faster electronic structure quantum simulation by spectrum amplification
Guang Hao Low
Robbie King
Dominic Berry
Qiushi Han
Albert Eugene DePrince III
Alec White
Rolando Somma
Physical Review X, 15 (2025), pp. 041016
Preview abstract
The most advanced techniques using fault-tolerant quantum computers to estimate the ground-state energy of a chemical Hamiltonian involve compression of the Coulomb operator through tensor factorizations, enabling efficient block encodings of the Hamiltonian. A natural challenge of these methods is the degree to which block-encoding costs can be reduced. We address this challenge through the technique of spectral amplification, which magnifies the spectrum of the low-energy states of Hamiltonians that can be expressed as sums of squares. Spectral amplification enables estimating ground-state energies with significantly improved cost scaling in the block encoding normalization factor Λ to just √2Λ𝐸gap, where 𝐸gap ≪Λ is the lowest energy of the sum-of-squares Hamiltonian. To achieve this, we show that sum-of-squares representations of the electronic structure Hamiltonian are efficiently computable by a family of classical simulation techniques that approximate the ground-state energy from below. In order to further optimize, we also develop a novel factorization that provides a trade-off between the two leading Coulomb integral factorization schemes—namely, double factorization and tensor hypercontraction—that when combined with spectral amplification yields a factor of 4 to 195 speedup over the state of the art in ground-state energy estimation for models of iron-sulfur complexes and a CO2-fixation catalyst.
View details