Ryan Babbush
Ryan is the director of the Quantum Algorithm & Applications Team at Google. The mandate of this research team is to develop new and more efficient quantum algorithms, discovery and analyze new applications of quantum computers, build and open source tools for accelerating quantum algorithms research, and to design algorithms experiments to demonstrate on existing quantum devices.
Authored Publications
Sort By
Rapid initial state preparation for the quantum simulation of strongly correlated molecules and materials
Dominic Berry
Yu Tong
Alec White
Tae In Kim
Lin Lin
Seunghoon Lee
Garnet Chan
arXiv:2409.11748 (2024)
Preview abstract
Studies on quantum algorithms for ground state energy estimation often assume perfect ground state preparation; however, in reality the initial state will have imperfect overlap with the true ground state. Here we address that problem in two ways: by faster preparation of matrix product state (MPS) approximations, and more efficient filtering of the prepared state to find the ground state energy. We show how to achieve unitary synthesis with a Toffoli complexity about $7 \times$ lower than that in prior work, and use that to derive a more efficient MPS preparation method. For filtering we present two different approaches: sampling and binary search. For both we use the theory of window functions to avoid large phase errors and minimise the complexity. We find that the binary search approach provides better scaling with the overlap at the cost of a larger constant factor, such that it will be preferred for overlaps less than about 0.003. Finally, we estimate the total resources to perform ground state energy estimation of FeMoco and Iron cluster systems by estimating ground state overlap on an MPS initial state through extrapolation. With a modest bond dimension of 4000 we estimate a 0.96 overlap squared value producing total resources of $7.5 \times 10^{10}$ Toffoli gates; validating naive estimates where we assume perfect ground state overlap. These extrapolations allay practical concerns of exponential overlap decay in challenging-to-compute chemical systems.
View details
Preview abstract
Given copies of a quantum state $\rho$, a shadow tomography protocol aims to learn all expectation values from a fixed set of observables, to within a given precision $\epsilon$. We say that a shadow tomography protocol is \textit{triply efficient} if it is sample- and time-efficient, and only employs measurements that entangle a constant number of copies of $\rho$ at a time. The classical shadows protocol based on random single-copy measurements is triply efficient for the set of local Pauli observables. This and other protocols based on random single-copy Clifford measurements can be understood as arising from fractional colorings of a graph $G$ that encodes the commutation structure of the set of observables. Here we describe a framework for two-copy shadow tomography that uses an initial round of Bell measurements to reduce to a fractional coloring problem in an induced subgraph of $G$ with bounded clique number. This coloring problem can be addressed using techniques from graph theory known as \textit{chi-boundedness}. Using this framework we give the first triply efficient shadow tomography scheme for the set of local fermionic observables, which arise in a broad class of interacting fermionic systems in physics and chemistry. We also give a triply efficient scheme for the set of all $n$-qubit Pauli observables. Our protocols for these tasks use two-copy measurements, which is necessary: sample-efficient schemes are provably impossible using only single-copy measurements. Finally, we give a shadow tomography protocol that compresses an $n$-qubit quantum state into a $\poly(n)$-sized classical representation, from which one can extract the expected value of any of the $4^n$ Pauli observables in $\poly(n)$ time, up to a small constant error.
View details
Analyzing Prospects for Quantum Advantage in Topological Data Analysis
Dominic W. Berry
Yuan Su
Casper Gyurik
Robbie King
Joao Basso
Abhishek Rajput
Nathan Wiebe
Vedran Djunko
PRX Quantum, 5 (2024), pp. 010319
Preview abstract
Lloyd et al. were first to demonstrate the promise of quantum algorithms for computing Betti numbers in persistent homology (a way of characterizing topological features of data sets). Here, we propose, analyze, and optimize an improved quantum algorithm for topological data analysis (TDA) with reduced scaling, including a method for preparing Dicke states based on inequality testing, a more efficient amplitude estimation algorithm using Kaiser windows, and an optimal implementation of eigenvalue projectors based on Chebyshev polynomials. We compile our approach to a fault-tolerant gate set and estimate constant factors in the Toffoli complexity. Our analysis reveals that super-quadratic quantum speedups are only possible for this problem when targeting a multiplicative error approximation and the Betti number grows asymptotically. Further, we propose a dequantization of the quantum TDA algorithm that shows that having exponentially large dimension and Betti number are necessary, but insufficient conditions, for super-polynomial advantage. We then introduce and analyze specific problem examples for which super-polynomial advantages may be achieved, and argue that quantum circuits with tens of billions of Toffoli gates can solve some seemingly classically intractable instances.
View details
Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
Trond Andersen
Rhine Samajdar
Andre Petukhov
Jesse Hoke
Dmitry Abanin
ILYA Drozdov
Xiao Mi
Alexis Morvan
Charles Neill
Rajeev Acharya
Richard Ross Allen
Kyle Anderson
Markus Ansmann
Frank Arute
Kunal Arya
Juan Atalaya
Gina Bortoli
Alexandre Bourassa
Leon Brill
Michael Broughton
Bob Buckley
Tim Burger
Nicholas Bushnell
Juan Campero
Hung-Shen Chang
Jimmy Chen
Benjamin Chiaro
Desmond Chik
Josh Cogan
Roberto Collins
Paul Conner
William Courtney
Alex Crook
Ben Curtin
Agustin Di Paolo
Andrew Dunsworth
Clint Earle
Lara Faoro
Edward Farhi
Reza Fatemi
Vinicius Ferreira
Ebrahim Forati
Brooks Foxen
Gonzalo Garcia
Élie Genois
William Giang
Dar Gilboa
Raja Gosula
Alejo Grajales Dau
Steve Habegger
Michael Hamilton
Monica Hansen
Sean Harrington
Paula Heu
Gordon Hill
Markus Hoffmann
Trent Huang
Ashley Huff
Bill Huggins
Sergei Isakov
Justin Iveland
Cody Jones
Pavol Juhas
Marika Kieferova
Alexei Kitaev
Andrey Klots
Alexander Korotkov
Fedor Kostritsa
John Mark Kreikebaum
Dave Landhuis
Pavel Laptev
Kim Ming Lau
Lily Laws
Joonho Lee
Kenny Lee
Yuri Lensky
Alexander Lill
Wayne Liu
Salvatore Mandra
Orion Martin
Steven Martin
Seneca Meeks
Amanda Mieszala
Shirin Montazeri
Ramis Movassagh
Wojtek Mruczkiewicz
Ani Nersisyan
Michael Newman
JiunHow Ng
Murray Ich Nguyen
Tom O'Brien
Seun Omonije
Alex Opremcak
Rebecca Potter
Leonid Pryadko
David Rhodes
Charles Rocque
Negar Saei
Kannan Sankaragomathi
Henry Schurkus
Christopher Schuster
Mike Shearn
Aaron Shorter
Noah Shutty
Vladimir Shvarts
Vlad Sivak
Jindra Skruzny
Clarke Smith
Rolando Somma
George Sterling
Doug Strain
Marco Szalay
Doug Thor
Alfredo Torres
Guifre Vidal
Cheng Xing
Jamie Yao
Ping Yeh
Juhwan Yoo
Grayson Young
Yaxing Zhang
Ningfeng Zhu
Jeremy Hilton
Anthony Megrant
Yu Chen
Vadim Smelyanskiy
Vedika Khemani
Sarang Gopalakrishnan
Tomaž Prosen
Science, 384 (2024), pp. 48-53
Preview abstract
Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain’s center, P(M). The first two moments of P(M) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems.
View details
Quantum Computation of Stopping power for Inertial Fusion Target Design
Dominic Berry
Alina Kononov
Alec White
Joonho Lee
Andrew Baczewski
Proceedings of the National Academy of Sciences, 121 (2024), e2317772121
Preview abstract
Stopping power is the rate at which a material absorbs the kinetic energy of a charged particle passing through it - one of many properties needed over a wide range of thermodynamic conditions in modeling inertial fusion implosions. First-principles stopping calculations are classically challenging because they involve the dynamics of large electronic systems far from equilibrium, with accuracies that are particularly difficult to constrain and assess in the warm-dense conditions preceding ignition. Here, we describe a protocol for using a fault-tolerant quantum computer to calculate stopping power from a first-quantized representation of the electrons and projectile. Our approach builds upon the electronic structure block encodings of Su et al. [PRX Quantum 2, 040332 2021], adapting and optimizing those algorithms to estimate observables of interest from the non-Born-Oppenheimer dynamics of multiple particle species at finite temperature. We also work out the constant factors associated with a novel implementation of a high order Trotter approach to simulating a grid representation of these systems. Ultimately, we report logical qubit requirements and leading-order Toffoli costs for computing the stopping power of various projectile/target combinations relevant to interpreting and designing inertial fusion experiments. We estimate that scientifically interesting and classically intractable stopping power calculations can be quantum simulated with
roughly the same number of logical qubits and about one hundred times more Toffoli gates than is required for state-of-the-art quantum simulations of industrially relevant molecules such as FeMoCo or P450.
View details
Optimization by Decoded Quantum Interferometry
Stephen Jordan
Noah Shutty
Mary Wootters
Alexander Schmidhuber
Robbie King
Sergei Isakov
arXiv:2408.08292 (2024)
Preview abstract
We introduce Decoded Quantum Interferometry (DQI), a quantum algorithm for reducing classical optimization problems to classical decoding problems by exploiting structure in the Fourier spectrum of the objective function. DQI reduces sparse max-XORSAT to decoding LDPC codes, which can be decoded using powerful classical algorithms such as belief propagation. As an initial benchmark, we compare DQI using belief propagation decoding against classical optimization via simulated annealing. In this setting we identify a family of max-XORSAT instances where DQI achieves a better approximation ratio on average than simulated annealing, although not better than specialized classical algorithms tailored to those instances. We also analyze a combinatorial optimization problem corresponding to finding polynomials that intersect the maximum number of points. There, DQI efficiently achieves a better approximation ratio than any polynomial-time classical algorithm known to us, thus realizing an apparent exponential quantum speedup. Finally, we show that the problem defined by Yamakawa and Zhandry in order to prove an exponential separation between quantum and classical query complexity is a special case of the optimization problem efficiently solved by DQI.
View details
Drug Design on Quantum Computers
Raffaele Santagati
Alán Aspuru-Guzik
Matthias Degroote
Leticia Gonzalez
Elica Kyoseva
Nikolaj Moll
Markus Oppel
Robert Parrish
Michael Streif
Christofer Tautermann
Horst Weiss
Nathan Wiebe
Clemens Utschig-Utschig
Nature Physics (2024)
Preview abstract
The promised industrial applications of quantum computers often rest on their anticipated ability to perform accurate, efficient quantum chemical calculations. Computational drug discovery relies on accurate predictions of how candidate drugs interact with their targets in a cellular environment involving several thousands of atoms at finite temperatures. Although quantum computers are still far from being used as daily tools in the pharmaceutical industry, here we explore the challenges and opportunities of applying quantum computers to drug design. We discuss where these could transform industrial research and identify the substantial further developments needed to reach this goal.
View details
Preview abstract
We describe a quantum algorithm for the Planted Noisy kXOR problem (also known as sparse Learning Parity with Noise) that achieves a nearly quartic (4th power) speedup over the best known classical algorithm while also only using logarithmically many qubits. Our work generalizes and simplifies prior work of Hastings, by building on his quantum algorithm for the Tensor Principal Component Analysis (PCA) problem. We achieve our quantum speedup using a general framework based on the Kikuchi Method (recovering the quartic speedup for Tensor PCA), and we anticipate it will yield similar speedups for further planted inference problems. These speedups rely on the fact that planted inference problems naturally instantiate the Guided Sparse Hamiltonian problem. Since the Planted Noisy kXOR problem has been used as a component of certain cryptographic constructions, our work suggests that some of these are susceptible to super-quadratic quantum attacks.
View details
Stable quantum-correlated many-body states through engineered dissipation
Xiao Mi
Alexios Michailidis
Sara Shabani
Jerome Lloyd
Rajeev Acharya
Igor Aleiner
Trond Andersen
Markus Ansmann
Frank Arute
Kunal Arya
Juan Atalaya
Gina Bortoli
Alexandre Bourassa
Leon Brill
Michael Broughton
Bob Buckley
Tim Burger
Nicholas Bushnell
Jimmy Chen
Benjamin Chiaro
Desmond Chik
Charina Chou
Josh Cogan
Roberto Collins
Paul Conner
William Courtney
Alex Crook
Ben Curtin
Alejo Grajales Dau
Dripto Debroy
Agustin Di Paolo
ILYA Drozdov
Andrew Dunsworth
Lara Faoro
Edward Farhi
Reza Fatemi
Vinicius Ferreira
Ebrahim Forati
Brooks Foxen
Élie Genois
William Giang
Dar Gilboa
Raja Gosula
Steve Habegger
Michael Hamilton
Monica Hansen
Sean Harrington
Paula Heu
Markus Hoffmann
Trent Huang
Ashley Huff
Bill Huggins
Sergei Isakov
Justin Iveland
Cody Jones
Pavol Juhas
Kostyantyn Kechedzhi
Marika Kieferova
Alexei Kitaev
Andrey Klots
Alexander Korotkov
Fedor Kostritsa
John Mark Kreikebaum
Dave Landhuis
Pavel Laptev
Kim Ming Lau
Lily Laws
Joonho Lee
Kenny Lee
Yuri Lensky
Alexander Lill
Wayne Liu
Orion Martin
Amanda Mieszala
Shirin Montazeri
Alexis Morvan
Ramis Movassagh
Wojtek Mruczkiewicz
Charles Neill
Ani Nersisyan
Michael Newman
JiunHow Ng
Murray Ich Nguyen
Tom O'Brien
Alex Opremcak
Andre Petukhov
Rebecca Potter
Leonid Pryadko
Charles Rocque
Negar Saei
Kannan Sankaragomathi
Henry Schurkus
Christopher Schuster
Mike Shearn
Aaron Shorter
Noah Shutty
Vladimir Shvarts
Jindra Skruzny
Clarke Smith
Rolando Somma
George Sterling
Doug Strain
Marco Szalay
Alfredo Torres
Guifre Vidal
Cheng Xing
Jamie Yao
Ping Yeh
Juhwan Yoo
Grayson Young
Yaxing Zhang
Ningfeng Zhu
Jeremy Hilton
Anthony Megrant
Yu Chen
Vadim Smelyanskiy
Dmitry Abanin
Science, 383 (2024), pp. 1332-1337
Preview abstract
Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
View details
Expressing and Analyzing Quantum Algorithms with Qualtran
Charles Yuan
Anurudh Peduri
arXiv::2409.04643 (2024)
Preview abstract
Quantum computing's transition from theory to reality has spurred the need for novel software tools to manage the increasing complexity, sophistication, toil, and chance for error of quantum algorithm development. We present Qualtran, an open-source library for representing and analyzing quantum algorithms. Using carefully chosen abstractions and data structures, we can simulate and test algorithms, automatically generate information-rich diagrams, and tabulate resource requirements. Qualtran offers a \emph{standard library} of algorithmic building blocks that are essential for modern cost-minimizing compilations. Its capabilities are showcased through the re-analysis of key algorithms in Hamiltonian simulation, chemistry, and cryptography. The resulting architecture-independent resource counts can be forwarded to our implementation of cost models to estimate physical costs like wall-clock time and number of physical qubits assuming a surface-code architecture. Qualtran provides a foundation for explicit constructions and reproducible analysis, fostering greater collaboration within the quantum algorithm development community. We believe tools like Qualtran will accelerate progress in the field.
View details