Sergio Boixo

Sergio Boixo

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
    Trond Andersen
    Rhine Samajdar
    Andre Petukhov
    Jesse Hoke
    Dmitry Abanin
    ILYA Drozdov
    Xiao Mi
    Alexis Morvan
    Charles Neill
    Rajeev Acharya
    Richard Ross Allen
    Kyle Anderson
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Juan Atalaya
    Gina Bortoli
    Alexandre Bourassa
    Leon Brill
    Michael Broughton
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Juan Campero
    Hung-Shen Chang
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Agustin Di Paolo
    Andrew Dunsworth
    Clint Earle
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Ebrahim Forati
    Brooks Foxen
    Gonzalo Garcia
    Élie Genois
    William Giang
    Dar Gilboa
    Raja Gosula
    Alejo Grajales Dau
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Sean Harrington
    Paula Heu
    Gordon Hill
    Markus Hoffmann
    Trent Huang
    Ashley Huff
    Bill Huggins
    Sergei Isakov
    Justin Iveland
    Cody Jones
    Pavol Juhas
    Marika Kieferova
    Alexei Kitaev
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Alexander Lill
    Wayne Liu
    Salvatore Mandra
    Orion Martin
    Steven Martin
    Seneca Meeks
    Amanda Mieszala
    Shirin Montazeri
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Murray Ich Nguyen
    Tom O'Brien
    Seun Omonije
    Alex Opremcak
    Rebecca Potter
    Leonid Pryadko
    David Rhodes
    Charles Rocque
    Negar Saei
    Kannan Sankaragomathi
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Vlad Sivak
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Doug Thor
    Alfredo Torres
    Guifre Vidal
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Jeremy Hilton
    Anthony Megrant
    Yu Chen
    Vadim Smelyanskiy
    Vedika Khemani
    Sarang Gopalakrishnan
    Tomaž Prosen
    Science, 384 (2024), pp. 48-53
    Preview abstract Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain’s center, P(M). The first two moments of P(M) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems. View details
    Preview abstract Studies on quantum algorithms for ground state energy estimation often assume perfect ground state preparation; however, in reality the initial state will have imperfect overlap with the true ground state. Here we address that problem in two ways: by faster preparation of matrix product state (MPS) approximations, and more efficient filtering of the prepared state to find the ground state energy. We show how to achieve unitary synthesis with a Toffoli complexity about $7 \times$ lower than that in prior work, and use that to derive a more efficient MPS preparation method. For filtering we present two different approaches: sampling and binary search. For both we use the theory of window functions to avoid large phase errors and minimise the complexity. We find that the binary search approach provides better scaling with the overlap at the cost of a larger constant factor, such that it will be preferred for overlaps less than about 0.003. Finally, we estimate the total resources to perform ground state energy estimation of FeMoco and Iron cluster systems by estimating ground state overlap on an MPS initial state through extrapolation. With a modest bond dimension of 4000 we estimate a 0.96 overlap squared value producing total resources of $7.5 \times 10^{10}$ Toffoli gates; validating naive estimates where we assume perfect ground state overlap. These extrapolations allay practical concerns of exponential overlap decay in challenging-to-compute chemical systems. View details
    Stable quantum-correlated many-body states through engineered dissipation
    Xiao Mi
    Alexios Michailidis
    Sara Shabani
    Jerome Lloyd
    Rajeev Acharya
    Igor Aleiner
    Trond Andersen
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Juan Atalaya
    Gina Bortoli
    Alexandre Bourassa
    Leon Brill
    Michael Broughton
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Charina Chou
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Alejo Grajales Dau
    Dripto Debroy
    Agustin Di Paolo
    ILYA Drozdov
    Andrew Dunsworth
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Ebrahim Forati
    Brooks Foxen
    Élie Genois
    William Giang
    Dar Gilboa
    Raja Gosula
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Sean Harrington
    Paula Heu
    Markus Hoffmann
    Trent Huang
    Ashley Huff
    Bill Huggins
    Sergei Isakov
    Justin Iveland
    Cody Jones
    Pavol Juhas
    Kostyantyn Kechedzhi
    Marika Kieferova
    Alexei Kitaev
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Alexander Lill
    Wayne Liu
    Orion Martin
    Amanda Mieszala
    Shirin Montazeri
    Alexis Morvan
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Charles Neill
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Murray Ich Nguyen
    Tom O'Brien
    Alex Opremcak
    Andre Petukhov
    Rebecca Potter
    Leonid Pryadko
    Charles Rocque
    Negar Saei
    Kannan Sankaragomathi
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Alfredo Torres
    Guifre Vidal
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Jeremy Hilton
    Anthony Megrant
    Yu Chen
    Vadim Smelyanskiy
    Dmitry Abanin
    Science, 383 (2024), pp. 1332-1337
    Preview abstract Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors. View details
    Preview abstract Practical quantum computing will require error rates that are well below what is achievable with physical qubits. Quantum error correction [1, 2] offers a path to algorithmically-relevant error rates by encoding logical qubits within many physical qubits, where increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low in order for logical performance to improve with increasing code size. Here, we report the measurement of logical qubit performance scaling across multiple code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, both in terms of logical error probability over 25 cycles and logical error per cycle (2.914%±0.016% compared to 3.028%±0.023%). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a 1.7 × 10−6 logical error per round floor set by a single high-energy event (1.6 × 10−7 when excluding this event). We are able to accurately model our experiment, and from this model we can extract error budgets that highlight the biggest challenges for future systems. These results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number, and illuminate the path to reaching the logical error rates required for computation. View details
    Measurement-induced entanglement and teleportation on a noisy quantum processor
    Jesse Hoke
    Matteo Ippoliti
    Dmitry Abanin
    Rajeev Acharya
    Trond Andersen
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Juan Atalaya
    Gina Bortoli
    Alexandre Bourassa
    Leon Brill
    Michael Broughton
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Alejo Grajales Dau
    Agustin Di Paolo
    ILYA Drozdov
    Andrew Dunsworth
    Daniel Eppens
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Ebrahim Forati
    Brooks Foxen
    William Giang
    Dar Gilboa
    Raja Gosula
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Paula Heu
    Markus Hoffmann
    Trent Huang
    Ashley Huff
    Bill Huggins
    Sergei Isakov
    Justin Iveland
    Cody Jones
    Pavol Juhas
    Kostyantyn Kechedzhi
    Marika Kieferova
    Alexei Kitaev
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Alexander Lill
    Wayne Liu
    Orion Martin
    Amanda Mieszala
    Shirin Montazeri
    Alexis Morvan
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Charles Neill
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Murray Ich Nguyen
    Tom O'Brien
    Seun Omonije
    Alex Opremcak
    Andre Petukhov
    Rebecca Potter
    Leonid Pryadko
    Charles Rocque
    Negar Saei
    Kannan Sankaragomathi
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Alfredo Torres
    Guifre Vidal
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Jeremy Hilton
    Anthony Megrant
    Yu Chen
    Vadim Smelyanskiy
    Xiao Mi
    Vedika Khemani
    Nature, 622 (2023), 481–486
    Preview abstract Measurement has a special role in quantum theory: by collapsing the wavefunction, it can enable phenomena such as teleportation and thereby alter the ‘arrow of time’ that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space–time that go beyond the established paradigms for characterizing phases, either in or out of equilibrium. For present-day noisy intermediate-scale quantum (NISQ) processors, the experimental realization of such physics can be problematic because of hardware limitations and the stochastic nature of quantum measurement. Here we address these experimental challenges and study measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping to avoid mid-circuit measurement and access different manifestations of the underlying phases, from entanglement scaling to measurement-induced teleportation. We obtain finite-sized signatures of a phase transition with a decoding protocol that correlates the experimental measurement with classical simulation data. The phases display remarkably different sensitivity to noise, and we use this disparity to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realizing measurement-induced physics at scales that are at the limits of current NISQ processors. View details
    Purification-Based Quantum Error Mitigation of Pair-Correlated Electron Simulations
    Thomas E O'Brien
    Gian-Luca R. Anselmetti
    Fotios Gkritsis
    Vincent Elfving
    Stefano Polla
    William J. Huggins
    Oumarou Oumarou
    Kostyantyn Kechedzhi
    Dmitry Abanin
    Rajeev Acharya
    Igor Aleiner
    Richard Ross Allen
    Trond Ikdahl Andersen
    Kyle Anderson
    Markus Ansmann
    Frank Carlton Arute
    Kunal Arya
    Juan Atalaya
    Michael Blythe Broughton
    Bob Benjamin Buckley
    Alexandre Bourassa
    Leon Brill
    Tim Burger
    Nicholas Bushnell
    Jimmy Chen
    Yu Chen
    Benjamin Chiaro
    Desmond Chun Fung Chik
    Josh Godfrey Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Ilya Drozdov
    Andrew Dunsworth
    Daniel Eppens
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Ebrahim Forati
    Brooks Riley Foxen
    William Giang
    Dar Gilboa
    Alejandro Grajales Dau
    Steve Habegger
    Michael C. Hamilton
    Sean Harrington
    Jeremy Patterson Hilton
    Markus Rudolf Hoffmann
    Trent Huang
    Ashley Anne Huff
    Sergei Isakov
    Justin Thomas Iveland
    Cody Jones
    Pavol Juhas
    Marika Kieferova
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily MeeKit Laws
    Joonho Lee
    Kenny Lee
    Alexander T. Lill
    Wayne Liu
    Orion Martin
    Trevor Johnathan Mccourt
    Anthony Megrant
    Xiao Mi
    Masoud Mohseni
    Shirin Montazeri
    Alexis Morvan
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Charles Neill
    Ani Nersisyan
    Michael Newman
    Jiun How Ng
    Murray Nguyen
    Alex Opremcak
    Andre Gregory Petukhov
    Rebecca Potter
    Kannan Aryaperumal Sankaragomathi
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Vladimir Shvarts
    Jindra Skruzny
    Vadim Smelyanskiy
    Clarke Smith
    Rolando Diego Somma
    Doug Strain
    Marco Szalay
    Alfredo Torres
    Guifre Vidal
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Robert Young
    Yaxing Zhang
    Ningfeng Zhu
    Christian Gogolin
    Nature Physics (2023)
    Preview abstract An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Prior to fault-tolerant quantum computing, robust error mitigation strategies are necessary to continue this growth. Here, we study physical simulation within the seniority-zero electron pairing subspace, which affords both a computational stepping stone to a fully correlated model, and an opportunity to validate recently introduced ``purification-based'' error-mitigation strategies. We compare the performance of error mitigation based on doubling quantum resources in time (echo verification) or in space (virtual distillation), on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques (e.g. post-selection); the gain from error mitigation is seen to increase with the system size. Employing these error mitigation strategies enables the implementation of the largest variational algorithm for a correlated chemistry system to-date. Extrapolating performance from these results allows us to estimate minimum requirements for a beyond-classical simulation of electronic structure. We find that, despite the impressive gains from purification-based error mitigation, significant hardware improvements will be required for classically intractable variational chemistry simulations. View details
    Direct Measurement of Nonlocal Interactions in the Many-Body Localized Phase
    Amit Vainsencher
    Andrew Dunsworth
    Anthony Megrant
    Ben Chiaro
    Brooks Foxen
    Charles Neill
    Dave Landhuis
    Fedor Kostritsa
    Frank Carlton Arute
    Jimmy Chen
    John Martinis
    Josh Mutus
    Kostyantyn Kechedzhi
    Kunal Arya
    Rami Barends
    Roberto Collins
    Trent Huang
    Vadim Smelyanskiy
    Yu Chen
    Physical Review Research, 4 (2022), pp. 013148
    Preview abstract The interplay of interactions and strong disorder can lead to an exotic quantum many-body localized (MBL) phase of matter. Beyond the absence of transport, the MBL phase has distinctive signatures, such as slow dephasing and logarithmic entanglement growth; they commonly result in slow and subtle modifications of the dynamics, rendering their measurement challenging. Here, we experimentally characterize these properties of the MBL phase in a system of coupled superconducting qubits. By implementing phase sensitive techniques, we map out the structure of local integrals of motion in the MBL phase. Tomographic reconstruction of single and two-qubit density matrices allows us to determine the spatial and temporal entanglement growth between the localized sites. In addition, we study the preservation of entanglement in the MBL phase. The interferometric protocols implemented here detect affirmative quantum correlations and exclude artifacts due to the imperfect isolation of the system. By measuring elusive MBL quantities, our work highlights the advantages of phase sensitive measurements in studying novel phases of matter. View details
    Noise-resilient Majorana Edge Modes on a Chain of Superconducting Qubits
    Alejandro Grajales Dau
    Alex Crook
    Alex Opremcak
    Alexa Rubinov
    Alexander Korotkov
    Alexandre Bourassa
    Alexei Kitaev
    Alexis Morvan
    Andre Gregory Petukhov
    Andrew Dunsworth
    Andrey Klots
    Anthony Megrant
    Ashley Anne Huff
    Benjamin Chiaro
    Bernardo Meurer Costa
    Bob Benjamin Buckley
    Brooks Foxen
    Charles Neill
    Christopher Schuster
    Cody Jones
    Daniel Eppens
    Dar Gilboa
    Dave Landhuis
    Dmitry Abanin
    Doug Strain
    Ebrahim Forati
    Edward Farhi
    Emily Mount
    Fedor Kostritsa
    Frank Carlton Arute
    Guifre Vidal
    Igor Aleiner
    Jamie Yao
    Jeremy Patterson Hilton
    Joao Basso
    John Mark Kreikebaum
    Joonho Lee
    Juan Atalaya
    Juhwan Yoo
    Justin Thomas Iveland
    Kannan Aryaperumal Sankaragomathi
    Kenny Lee
    Kim Ming Lau
    Kostyantyn Kechedzhi
    Kunal Arya
    Lara Faoro
    Leon Brill
    Marco Szalay
    Markus Rudolf Hoffmann
    Masoud Mohseni
    Michael Blythe Broughton
    Michael Newman
    Michel Henri Devoret
    Mike Shearn
    Nicholas Bushnell
    Orion Martin
    Paul Conner
    Pavel Laptev
    Ping Yeh
    Rajeev Acharya
    Rebecca Potter
    Reza Fatemi
    Roberto Collins
    Sergei Isakov
    Shirin Montazeri
    Steve Habegger
    Thomas E O'Brien
    Trent Huang
    Trond Ikdahl Andersen
    Vadim Smelyanskiy
    Vladimir Shvarts
    Wayne Liu
    William Courtney
    William Giang
    William J. Huggins
    Wojtek Mruczkiewicz
    Xiao Mi
    Yaxing Zhang
    Yu Chen
    Yuan Su
    Zijun Chen
    Science (2022) (to appear)
    Preview abstract Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the kicked Ising model which exhibits Majorana edge modes (MEMs) protected by a $\mathbb{Z}_2$-symmetry. Remarkably, we find that any multi-qubit Pauli operator overlapping with the MEMs exhibits a uniform decay rate comparable to single-qubit relaxation rates, irrespective of its size or composition. This finding allows us to accurately reconstruct the exponentially localized spatial profiles of the MEMs. Spectroscopic measurements further indicate exponentially suppressed hybridization between the MEMs over larger system sizes, which manifests as a strong resilience against low-frequency noise. Our work elucidates the noise sensitivity of symmetry-protected edge modes in a solid-state environment. View details
    Quantum Approximate Optimization of Non-Planar Graph Problems on a Planar Superconducting Processor
    Kevin Jeffery Sung
    Frank Carlton Arute
    Kunal Arya
    Juan Atalaya
    Rami Barends
    Michael Blythe Broughton
    Bob Benjamin Buckley
    Nicholas Bushnell
    Jimmy Chen
    Yu Chen
    Ben Chiaro
    Roberto Collins
    William Courtney
    Andrew Dunsworth
    Brooks Riley Foxen
    Rob Graff
    Steve Habegger
    Sergei Isakov
    Cody Jones
    Kostyantyn Kechedzhi
    Alexander Korotkov
    Fedor Kostritsa
    Dave Landhuis
    Pavel Laptev
    Martin Leib
    Mike Lindmark
    Orion Martin
    John Martinis
    Anthony Megrant
    Xiao Mi
    Masoud Mohseni
    Wojtek Mruczkiewicz
    Josh Mutus
    Charles Neill
    Florian Neukart
    Thomas E O'Brien
    Bryan O'Gorman
    A.G. Petukhov
    Harry Putterman
    Andrea Skolik
    Vadim Smelyanskiy
    Doug Strain
    Michael Streif
    Marco Szalay
    Amit Vainsencher
    Jamie Yao
    Leo Zhou
    Edward Farhi
    Nature Physics (2021)
    Preview abstract Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the planar connectivity graph native to our hardware; however, we also apply the QAOA to the Sherrington–Kirkpatrick model and MaxCut, non-native problems that require extensive compilation to implement. For hardware-native problems, which are classically efficient to solve on average, we obtain an approximation ratio that is independent of problem size and observe that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size. Circuits involving several thousand gates still present an advantage over random guessing but not over some efficient classical algorithms. Our results suggest that it will be challenging to scale near-term implementations of the QAOA for problems on non-native graphs. As these graphs are closer to real-world instances, we suggest more emphasis should be placed on such problems when using the QAOA to benchmark quantum processors. View details
    Error Mitigation via Verified Phase Estimation
    Thomas E O'Brien
    Stefano Polla
    Bill Huggins
    Sam Connor McArdle
    PRX Quantum, 2 (2021)
    Preview abstract We present a novel error mitigation technique for quantum phase estimation. By post-selecting the system register to be in the starting state, we convert all single errors prior to final measurement to a time-dependent decay (up to on average exponentially small corrections), which may be accurately corrected for at the cost of additional measurement. This error migitation can be built into phase estimation techniques that do not require control qubits. By separating the observable of interest into a linear combination of fast-forwardable Hamiltonians and measuring those components individually, we can convert this decay into a constant offset. Using this technique, we demonstrate the estimation of expectation values on numerical simulations of moderately-sized quantum circuits with multiple orders of magnitude improvement over unmitigated estimation at near-term error rates. We further combine verified phase estimation with the optimization step in a variational algorithm to provide additional mitigation of control error. In many cases, our results demonstrate a clear signature that the verification technique can mitigate against any single error occurring in an instance of a quantum computation: the error $\epsilon$ in the expectation value estimation scales with $p^2$, where $p$ is the probability of an error occurring at any point in the circuit. Further numerics indicate that our scheme remains robust in the presence of sampling noise, though different classical post-processing methods may lead to up to an order of magnitude error increase in the final energy estimates. View details