Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10313 publications
    Zero-Shot Image Moderation in Google Ads with LLM-Assisted Textual Descriptions and Cross-modal Co-embeddings
    Jimin Li
    Eric Xiao
    Katie Warren
    Enming Luo
    Krishna Viswanathan
    Ariel Fuxman
    Bill Li
    Yintao Liu
    (2025)
    Preview abstract We present a scalable and agile approach for ads image content moderation at Google, addressing the challenges of moderating massive volumes of ads with diverse content and evolving policies. The proposed method utilizes human-curated textual descriptions and cross-modal text-image co-embeddings to enable zero-shot classification of policy violating ads images, bypassing the need for extensive supervised training data and human labeling. By leveraging large language models (LLMs) and user expertise, the system generates and refines a comprehensive set of textual descriptions representing policy guidelines. During inference, co-embedding similarity between incoming images and the textual descriptions serves as a reliable signal for policy violation detection, enabling efficient and adaptable ads content moderation. Evaluation results demonstrate the efficacy of this framework in significantly boosting the detection of policy violating content. View details
    Preview abstract Project estimation is a crucial aspect of project management that is often fraught with uncertainty. Accurately predicting project costs, timelines, and potential risks is essential for successful project delivery and eventually the program success which comprises several focused projects. Program Evaluation and Review Technique (PERT) is a valuable tool for addressing these challenges by providing a structured approach to project scheduling and risk assessment. Hopfield networks are a type of recurrent neural network with a rich history in the field of artificial intelligence particularly for their role in associative memory and optimization tasks. This paper delves into the potential application of Hopfield networks in PERT analysis, exploring practical implementations, challenges and strategies for overcoming limitations to enhance project and program management outcomes. View details
    Automatic Synthesis of Specialized Hash Function
    Renato B Hoffmann
    Leonardo G Fae
    Fernando Magno Quintao Pereira
    Dalvan Grieber
    2025
    Preview abstract https://www.overleaf.com/project/65ba7d45dae2bce751dba252 Hashing is a fundamental operation in various computer sci- ence applications. Despite the prevalence of specific key formats like social security numbers, MAC addresses, plate numbers, and URLs, hashing libraries typically treat them as general byte sequences. This paper introduces a technique for synthesizing specialized hash functions tailored to par- ticular byte formats. The proposed code generation method leverages three prevalent patterns: (i) fixed-length keys, (ii) keys with common subsequences, and (iii) keys ranging on predetermined sequences of bytes. The code generation pro- cess involves two algorithms: one identifies relevant regular expressions within key examples, and the other generates specialized hash functions based on these expressions. This approach, straightforward to implement, showcases improve- ments over highly optimized hash function implementations. Comparative analysis demonstrates that our synthetic func- tions outperform counterparts in the C++ Standard Template Library and the Google Abseil Library, achieving speedups ranging from 2% to 11%, depending on the key format. View details
    Preview abstract Despite the advent of legislation such as the General Data Protection Regulation (GDPR) with its associated "Right to be Forgotten" (RTBF), few, if any, studies have measured user reactions to realistic edge cases with public-interest content. Surveying both users covered by and excluded from RTBF, this vignette-based survey experiment sought to better understand how users think of delisting content from search engine results and what factors influence user perceptions. While leaving information accessible in search engine results generally leads to warmer feelings towards those search engines than delisting it, we find that users do prefer different outcomes depending on contextual elements specific to given cases. We also find that whether a country has active RTBF legislation does seem to be associated with both knowledge and attitudes about RTBF, but is unlikely to explain all of it. These results indicate a complex context around removing public-interest content from search engines’ results; it is essential that experts sensitive to local context perform the review in order to ensure that removal requests are handled in a way that meets users’ expectations. View details
    Online-EYE: multimodal implicit eye tracking calibration for XR
    Baosheng James Hou
    Lucy Abramyan
    Prasanthi Gurumurthy
    Khushman Patel
    Haley Adams
    Andrea Colaco
    Ken Pfeuffer
    Hans Gellersen
    Karan Ahuja
    2025
    Preview abstract Unlike other inputs for VR that work out of the box, eye tracking typically requires custom calibration per user or session. We present a multimodal inputs approach for implicit calibration of eye tracker in VR, leveraging UI interaction for continuous, background calibration. Our method analyzes gaze data alongside controller interaction with UI elements, and employing ML techniques it continuously refines the calibration matrix without interrupting users from their current tasks. Potentially eliminating the need for explicit calibration. We demonstrate the accuracy and effectiveness of this implicit approach across various tasks and real time applications achieving comparable eye tracking accuracy to native, explicit calibration. View details
    Preview abstract Intuitively, the more complex a software system is, the harder it is to maintain. Statistically, it is not clear which complexity measures correlate with maintenance effort; in fact, it is not even clear how to objectively measure maintenance burden, so that developers’ sentiment and intuition can be supported by numbers. Without effective complexity and maintenance measures, it remains difficult to objectively monitor maintenance, control complexity, or justify refactoring. In this paper, we report a large-scale study of 1200+ projects written in C++ and Java from Google LLC. In this study, we collected three categories of measures: (1) architectural complexity, measured using propagation cost (PC), decoupling level (DL), and structural anti-patterns; (2) maintenance activity, measured using the number of changes, lines of code (LOC) written, and active coding time (ACT) spent on feature-addition vs. bug-fixing, and (3) developer sentiment on complexity and productivity, collected from 7200 survey responses. We statistically analysed the correlations among these measures and obtained significant evidence of the following findings: 1) the more complex the architecture is (higher propagation cost, more instances of anti-patterns), the more LOC is spent on bug-fixing, rather than adding new features; 2) developers who commit more changes for features, spend more lines of code on features, or spend more time on features also feel that they are less hindered by technical debt and complexity. To the best of our knowledge, this is the first large-scale empirical study establishing the statistical correlation among architectural complexity, maintenance activity, and developer sentiment. The implication is that, instead of solely relying upon developer sentiment and intuitions to detect degraded structure or increased burden to evolve, it is possible to objectively and continuously measure and monitor architectural complexity and maintenance difficulty, increasing feature delivery efficiency by reducing architectural complexity and anti-patterns. View details
    Preview abstract Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a way to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that proprietary LLMs (Gemini, GPT, Claude) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, open-source LLMs (Llama, Mistral, Gemma) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10% for Gemini, GPT, and Gemma. View details
    Snap-it, Tap-it, Splat-it: Tactile-Informed 3D Gaussian Splatting for Reconstructing Challenging Surfaces
    Mauro Comi
    Max Yang
    Jonathan Tremblay
    Valts Blukis
    Yijiong Lin
    Nathan Lepora
    Laurence Aitchison
    2025
    Preview abstract Touch and vision go hand in hand, mutually enhancing our ability to understand the world. From a research perspective, the problem of mixing touch and vision is underexplored and presents interesting challenges. To this end, we propose Tactile-Informed 3DGS, a novel approach that incorporates touch data (local depth maps) with multi-view vision data to achieve surface reconstruction and novel view synthesis. Our method optimises 3D Gaussian primitives to accurately model the object's geometry at points of contact. By creating a framework that decreases the transmittance at touch locations, we achieve a refined surface reconstruction, ensuring a uniformly smooth depth map. Touch is particularly useful when considering non-Lambertian objects (e.g. shiny or reflective surfaces) since contemporary methods tend to fail to reconstruct with fidelity specular highlights. By combining vision and tactile sensing, we achieve more accurate geometry reconstructions with fewer images than prior methods. We conduct evaluation on objects with glossy and reflective surfaces and demonstrate the effectiveness of our approach, offering significant improvements in reconstruction quality. View details
    Fast electronic structure quantum simulation by spectrum amplification
    Guang Hao Low
    Robbie King
    Dominic Berry
    Qiushi Han
    Albert Eugene DePrince III
    Alec White
    Rolando Somma
    arXiv:2502.15882 (2025)
    Preview abstract The most advanced techniques using fault-tolerant quantum computers to estimate the ground-state energy of a chemical Hamiltonian involve compression of the Coulomb operator through tensor factorizations, enabling efficient block-encodings of the Hamiltonian. A natural challenge of these methods is the degree to which block-encoding costs can be reduced. We address this challenge through the technique of spectrum amplification, which magnifies the spectrum of the low-energy states of Hamiltonians that can be expressed as sums of squares. Spectrum amplification enables estimating ground-state energies with significantly improved cost scaling in the block encoding normalization factor $\Lambda$ to just $\sqrt{2\Lambda E_{\text{gap}}}$, where $E_{\text{gap}} \ll \Lambda$ is the lowest energy of the sum-of-squares Hamiltonian. To achieve this, we show that sum-of-squares representations of the electronic structure Hamiltonian are efficiently computable by a family of classical simulation techniques that approximate the ground-state energy from below. In order to further optimize, we also develop a novel factorization that provides a trade-off between the two leading Coulomb integral factorization schemes-- namely, double factorization and tensor hypercontraction-- that when combined with spectrum amplification yields a factor of 4 to 195 speedup over the state of the art in ground-state energy estimation for models of Iron-Sulfur complexes and a CO$_{2}$-fixation catalyst. View details
    Preview abstract Users of routing services like Apple Maps, Google Maps, and Waze frequently wonder why a given route is proposed. This question particularly arises when dynamic conditions like traffic and road closures cause unusual routes to be proposed. While many such dynamic conditions may exist in a road network at any time, only a small fraction of those conditions are typically relevant to a given user's route. In this work, we give a simple algorithm that identifies a small set of traffic-laden road segments that answer the following question: Which traffic conditions cause a particular shortest traffic-aware route to differ from the shortest traffic-free route? We theoretically and experimentally show that our algorithm generates small and interpretable answers to this question. View details
    InstructPipe: Generating Visual Blocks Pipelines with Human Instructions and LLMs
    Zhongyi Zhou
    Jing Jin
    Xiuxiu Yuan
    Jun Jiang
    Jingtao Zhou
    Yiyi Huang
    Kristen Wright
    Jason Mayes
    Mark Sherwood
    Alex Olwal
    Ram Iyengar
    Na Li
    Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI), ACM, pp. 23
    Preview abstract Visual programming has the potential of providing novice programmers with a low-code experience to build customized processing pipelines. Existing systems typically require users to build pipelines from scratch, implying that novice users are expected to set up and link appropriate nodes from a blank workspace. In this paper, we introduce InstructPipe, an AI assistant for prototyping machine learning (ML) pipelines with text instructions. We contribute two large language model (LLM) modules and a code interpreter as part of our framework. The LLM modules generate pseudocode for a target pipeline, and the interpreter renders the pipeline in the node-graph editor for further human-AI collaboration. Both technical and user evaluation (N=16) shows that InstructPipe empowers users to streamline their ML pipeline workflow, reduce their learning curve, and leverage open-ended commands to spark innovative ideas. View details
    Preview abstract Eye-based interaction techniques for extended reality, such as gaze and pinch, are simple to use however suffer from input precision issues. We present H2E, a fine and coarse-grained pointing technique that cascades Hand, Head, and Eye inputs. As users initiate a pinch gesture, a cursor appears at the gaze point that can be dragged by head pointing before pinch confirmation. This has the potential advantage that it can add a precision component without changing the semantics of the technique. In this paper, we describe the design and implementation of the technique. Furthermore, we present an evaluation of our method in a Fitts-based user study, exploring the speed-accuracy trade-offs against a gaze and pinch interaction baseline. View details
    Context is Key for Agent Security
    Lillian Tsai
    Eugene Bagdasaryan
    arXiv (2025)
    Preview abstract Judging the safety of an action, whether taken by a human or a system, must take into account the context in which the action takes place. For example, deleting an email from a user's mailbox may or may not be appropriate depending on the email's content, the user's goals, or even available space. Systems today that make these judgements---providing security against harmful or inappropriate actions---rely on manually-crafted policies or user confirmation for each relevant context. With the upcoming deployment of systems like generalist agents, we argue that we must rethink security designs to adapt to the scale of contexts and capabilities of these systems. As a first step, this paper explores contextual security in the domain of agents and proposes contextual security for agents (Conseca), a framework to generate just-in-time, contextual, and human-verifiable security policies. View details
    Preview abstract We study the existence of almost fair and near-optimal solutions to a routing problem as defined in the seminal work of Rosenthal. We focus on the setting where multiple alternative routes are available for each potential request (which corresponds to a potential user of the network). This model captures a collection of diverse applications such as packet routing in communication networks, routing in road networks with multiple alternative routes, and the economics of transportation of goods. Our recommended routes have provable guarantees in terms of both the total cost and fairness concepts such as approximate envy-freeness. We employ and appropriately combine tools from algorithmic game theory and fair division. Our results apply on two distinct models: the splittable case where the request is split among the selected paths (e.g., routing a fleet of trucks) and the unsplittable case where the request is assigned to one of its designated paths (e.g., a single user request). Finally, we conduct an empirical analysis to test the performance of our approach against simpler baselines using the real world road network of New York City. View details