Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10501 publications
    Scaling Laws for Downstream Task Performance in Machine Translation
    Natalia Ponomareva
    Hussein Hazimeh
    Sanmi Koyejo
    International Conference on Learning Representations (ICLR) (2025) (to appear)
    Preview abstract Scaling laws provide important insights that can guide the design of large language models (LLMs). Existing work has primarily focused on studying scaling laws for pretraining (upstream) loss. However, in transfer learning settings, in which LLMs are pretrained on an unsupervised dataset and then finetuned on a downstream task, we often also care about the downstream performance. In this work, we study the scaling behavior in a transfer learning setting, where LLMs are finetuned for machine translation tasks. Specifically, we investigate how the choice of the \emph{pretraining} data and its size affect downstream performance (translation quality) as judged by: downstream cross-entropy and translation quality metrics such as BLEU and COMET scores. Our experiments indicate that the size of the finetuning dataset and the distribution alignment between the pretraining and downstream data significantly influence the scaling behavior. With sufficient alignment, both downstream cross-entropy and translation quality scores improve monotonically with more pretraining data. In such cases, we show that it is possible to predict the downstream translation quality metrics with good accuracy using a log-law. However, there are cases where moderate misalignment causes the downstream translation scores to fluctuate or get worse with more pretraining, whereas downstream cross-entropy monotonically improves. By analyzing these, we provide new practical insights for choosing appropriate pretraining data. View details
    GOALIE (GOAL oriented IntErventions) Proactive Multimodal Agent to Assist Augmented Reality
    Saptarashmi Bandyopadhyay
    Vikas Bahirwani
    Lavisha Aggarwal
    Bhanu Guda
    Lin Li
    Qin Liu
    Tom Goldstein
    John Dickerson
    Andrea Colaco
    2025
    Preview abstract Multimodal AI Agents are helpful to assist and guide users in completing real-time tasks like cooking, robotics, manufacturing. An emerging form of multimodal communication is Augmented Reality (AR), where an AI Agent can enhance user experience with step-by-step guidance of tasks by observing the user's vision and language inputs. Current LLM or VLM based agents are reactive, waiting for an user query before responding. Proactive AI Agents in AR focus on detecting when the AI Agent should autonomously intervene to fix mistakes or followup any instruction. Our GOALIE (GOAL-oriented IntErvention) Agent is the first multimodal proactive AR agent which guides the user step-by-step on its own. We build an innovative Zero-Shot Prompting framework PSoS (Proactive Sequence of Steps) with the context of abstract past user actions, the agent's previous responses, and the user's granular goals and actions before it is detected that the AI Agent should intervene. We use PSoS for Supervised Finetuning (SFT), Direct Preference Optimization (DPO) and Group-Relative Policy Optimization (GRPO) finetuning of our AI agent to improve the quality of the agent's proactive intervention. We also propose a new algorithmic framework, Bagged group Relative Policy Optimization (BRPO), to reduce the variance in rewards of generation groups, to adapt the finetuning algorithm for multimodal proactive interventions by the AI Agent and to enable real-time finetuning of the AI model. We compare the step-by-step intervention quality and efficiency of the GOALIE Agent with Gemma-3 models along with other VLMs for task execution with human expert labels. We conduct human evaluation of the proactive interventions, demonstrating user satisfaction with the GOALIE Agent's proactive interventions. We will release the code, model and human evaluation data. View details
    Fast electronic structure quantum simulation by spectrum amplification
    Guang Hao Low
    Robbie King
    Dominic Berry
    Qiushi Han
    Albert Eugene DePrince III
    Alec White
    Rolando Somma
    arXiv:2502.15882 (2025)
    Preview abstract The most advanced techniques using fault-tolerant quantum computers to estimate the ground-state energy of a chemical Hamiltonian involve compression of the Coulomb operator through tensor factorizations, enabling efficient block-encodings of the Hamiltonian. A natural challenge of these methods is the degree to which block-encoding costs can be reduced. We address this challenge through the technique of spectrum amplification, which magnifies the spectrum of the low-energy states of Hamiltonians that can be expressed as sums of squares. Spectrum amplification enables estimating ground-state energies with significantly improved cost scaling in the block encoding normalization factor $\Lambda$ to just $\sqrt{2\Lambda E_{\text{gap}}}$, where $E_{\text{gap}} \ll \Lambda$ is the lowest energy of the sum-of-squares Hamiltonian. To achieve this, we show that sum-of-squares representations of the electronic structure Hamiltonian are efficiently computable by a family of classical simulation techniques that approximate the ground-state energy from below. In order to further optimize, we also develop a novel factorization that provides a trade-off between the two leading Coulomb integral factorization schemes-- namely, double factorization and tensor hypercontraction-- that when combined with spectrum amplification yields a factor of 4 to 195 speedup over the state of the art in ground-state energy estimation for models of Iron-Sulfur complexes and a CO$_{2}$-fixation catalyst. View details
    Leveraging Per-Example Privacy for Machine Unlearning
    Nazanin Mohammadi Sepahvand
    Anvith Thudi
    Ashmita Bhattacharyya
    Nicolas Papernot
    Eleni Triantafillou
    Daniel M. Roy
    Karolina Dziugaite
    International Conference on Machine Learning (ICML) (2025)
    Preview abstract This work focuses on developing fine-grained theoretical insights to quantify unlearning difficulty at the level of individual data points for fine-tuning-based unlearning. Unlike other unlearning methods that lack theoretical guarantees for non-convex models, our approach builds on recent advances in differential privacy to provide per-instance guarantees using Rényi divergence. While our theoretical analysis applies to Langevin dynamics, we empirically demonstrate that the derived guarantees—and their trends—continue to hold for fine-tuning, even in the absence of explicit noise. Our results show that per-instance privacy levels computed from training dynamics reliably predict unlearning difficulty, offering a principled and practical way to assess unlearning performance. Furthermore, our method identifies harder-to-unlearn data more effectively than existing heuristics, providing a more precise tool for guiding unlearning strategies. These findings pave the way for adaptive and efficient unlearning methods tailored to the properties of specific data points. View details
    Preview abstract Unifying query languages is key in reducing toil for app developers and end users to query and analyze observability data. A common query language that can leverage all observability data such as metrics, traces, profiles, events, logs to facilitate correlation, support trend analytics and provide end-to-end observability for AI applications. The Observability TAG QLS workgroup is finalizing a semantic query language spec in 2025 and is recommending SQL as a basis with further experimentation on syntaxes. This talk will explore the design principles, user research and challenges of creating a query language to support observability goals. It will delve into the core concepts, syntax, and semantics of SQL operators and its needed syntactic sugar, while addressing the unique requirements of observability data. It will also explore the trade-offs between simplicity, expressiveness, and performance. This query language convergence for end-to-end analytics could enhance reliability and operational efficiency for SREs and your app developers. A win-win for all. View details
    PROTECT: A Framework to Foster Digital Resilience for Youth Navigating Technology-Facilitated Abuse
    Diana Freed
    Natalie Bazarova
    Dan Cosley
    Patrick Gage Kelley
    Social Sciences Journal, 14(6) (2025)
    Preview abstract Youth are increasingly exposed to a broad range of technology-facilitated abuse that challenges their safety and well-being. Building on previous work that examined youth help-seeking behaviors, coping strategies, threats they encounter, and the social support systems around them, we articulate a framework— called PROTECT—Problem recognition, Reaching out, Organizing support, Training, Engaging experts, Continuous support, and Tackling safety measures—which integrates existing models of support, help-seeking, and digital skills to offer a high-level, structured approach to adults who serve as a support system to youth navigate technology-facilitated abuse. The framework unpacks social and contextual dynamics that influence help-seeking behaviors, providing a foundation for educators, advocates, health professionals, developers and other adult stakeholders to design and develop trauma-informed, timely interventions to promote resilience. View details
    Emerging AI Trends for Sustainable Data Centers
    Vandana Kollati
    International Journal of Management, IT & Engineering (2025)
    Preview abstract As the demand for data and digital services continues to escalate, data centers are evolving into key players in the global energy consumption landscape. The necessity for sustainability and energy efficiency in these facilities has led to the integration of Artificial Intelligence (AI) technologies. This paper explores emerging AI trends that are shaping sustainable data centers, focusing on optimization, predictive analytics, and machine learning applications, along with their implications for operational efficiency and environmental impact. The rapid growth of artificial intelligence (AI) has significantly impacted data center operations, driving the need for sustainable practices. Emerging trends such as AI-driven energy optimization, renewable energy integration, and advanced cooling technologies are reshaping the industry. These innovations aim to reduce energy consumption, minimize carbon footprints, and enhance operational efficiency. By leveraging AI, data centers can predict maintenance needs, optimize energy usage, and adapt to real-time demands. This paper explores the intersection of AI and sustainability, highlighting how these advancements contribute to a more eco-friendly and efficient future for data centers. View details
    InstructPipe: Generating Visual Blocks Pipelines with Human Instructions and LLMs
    Jing Jin
    Xiuxiu Yuan
    Jun Jiang
    Jingtao Zhou
    Yiyi Huang
    Zheng Xu
    Kristen Wright
    Jason Mayes
    Mark Sherwood
    Johnny Lee
    Alex Olwal
    Ram Iyengar
    Na Li
    Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI), ACM, pp. 23
    Preview abstract Visual programming has the potential of providing novice programmers with a low-code experience to build customized processing pipelines. Existing systems typically require users to build pipelines from scratch, implying that novice users are expected to set up and link appropriate nodes from a blank workspace. In this paper, we introduce InstructPipe, an AI assistant for prototyping machine learning (ML) pipelines with text instructions. We contribute two large language model (LLM) modules and a code interpreter as part of our framework. The LLM modules generate pseudocode for a target pipeline, and the interpreter renders the pipeline in the node-graph editor for further human-AI collaboration. Both technical and user evaluation (N=16) shows that InstructPipe empowers users to streamline their ML pipeline workflow, reduce their learning curve, and leverage open-ended commands to spark innovative ideas. View details
    Our Approach to Protecting AI Training Data
    Cindy Muya
    Jason Novak
    Cindee Madison
    Reiner Critides
    Ben Kamber
    Niha Vempati
    Jeremy Wiesner
    , Google, 1600 Amphitheatre Parkway, Mountain View, CA, 94043 (2025)
    Preview abstract Google has over 25 years experience protecting data from inappropriate access and unauthorized use. In the era of AI, Google has extended these best practices in data protection to ensure that the right data is used the right way to train models. This paper presents a number of these best practices, describes how Google applies them in its systems, and describes how Google Cloud customers can use Google Cloud capabilities to implement these practices themselves. Protecting data requires both technical controls to enable safe data use at scale, and governance processes to ensure that companies have visibility and control over how their data is used. This fundamentally requires: understanding data and ensuring it has sufficient metadata in the form of attributes, controlling the data and implementing policies to allow (or disallow) certain usage based on those attributes, transforming data to enable its usage in policy compliant ways, and human oversight and governance. Protecting data in AI inherits these requirements and introduces new requirements to account for unique AI-specific risks including memorization/recitation and the costs of training foundational models. Meeting these new risks requires new capabilities including enhanced understanding of data and model lineage as well as an increased ability to control data usage through checks on data for policy compliance at the time a training job is configured before it is run. This white paper offers an in-depth look at data protection best practices and Google’s data protection capabilities, and is one of a series of publications about Google's Secure AI Framework (SAIF). Building upon its secure development practices, Google has developed and deployed a number of capabilities to understand, control, and transform data in its infrastructure so that data is both protected and used appropriately. This involves robust annotation systems to represent metadata and enable granular understanding of data at both an item and dataset level, policy engines that evaluate machine readable policies on that data using the metadata attributes, and sensors to understand how data is flowing across Google’s systems and raise alerts when policy violations occur. Moreover, Google has developed de-identification and anonymization systems to transform data to make it policy compliant and safer to use for AI training. View details
    ESAM++: Efficient Online 3D Perception on the Edge
    Qin Liu
    Lavisha Aggarwal
    Vikas Bahirwani
    Lin Li
    Aleksander Holynski
    Saptarashmi Bandyopadhyay
    Zhengyang Shen
    Marc Niethammer
    Ehsan Adeli
    Andrea Colaco
    2025
    Preview abstract Online 3D scene perception in real time is critical for robotics, AR/VR, and autonomous systems, particularly in edge computing scenarios where computational resources are limited. Recent state-of-the-art methods like EmbodiedSAM (ESAM) demonstrate the promise of online 3D perception by leveraging the 2D visual foundation model (VFM) with efficient 3D query lifting and merging. However, ESAM depends on a computationally expensive sparse 3D U-Net for point cloud feature extraction, which we identify as the primary efficiency bottleneck. In this paper, we propose a lightweight and scalable alternative for online 3D scene perception tailored to edge devices. Our method introduces a 3D Sparse FeaturePyramid Network (SFPN) that efficiently captures multi-scale geometric features from streaming 3D point clouds while significantly reducing computational over-head and model size. We evaluate our approach on four challenging segmentation benchmarks—ScanNet, ScanNet200, SceneNN, and 3RScan—demonstrating that our model achieves competitive accuracy with up to 3×faster inference and 3×small model size compared to ESAM, enabling practical deployment in real-world edge scenarios. Code and models will be released. View details
    Mufu: Multilingual Fused Learning for Low- Resource Translation with LLM
    Zheng Lim
    Honglin Yu
    Trevor Cohn
    International Conference on Learning Representations (ICLR) 2025
    Preview abstract Multilingual large language models (LLMs) are great translators, but this is largely limited to high-resource languages. For many LLMs, translating in and out of low-resource languages remains a challenging task. To maximize data efficiency in this low-resource setting, we introduce Mufu, which includes a selection of automatically generated multilingual candidates and an instruction to correct inaccurate translations in the prompt. Mufu prompts turn a translation task into a postediting one, and seek to harness the LLM's reasoning capability with auxiliary translation candidates, from which the model is required to assess the input quality, align the semantics cross-lingually, copy from relevant inputs and override instances that are incorrect. Our experiments on En-XX translations over the Flores-200 dataset show LLMs finetuned against Mufu-style prompts are robust to poor quality auxiliary translation candidates, achieving performance superior to NLLB 1.3B distilled model in 64% of low- and very-low-resource language pairs. We then distill these models to reduce inference cost, while maintaining on average 3.1 chrF improvement over finetune-only baseline in low-resource translations. View details
    Preview abstract Artificial Intelligence (AI) is rapidly expanding and integrating more into daily life to automate tasks, guide decision-making and enhance efficiency. However, complex AI models, which make decisions without providing clear explanations (known as the "black-box problem"), currently restrict trust and widespread adoption of AI. Explainable Artificial intelligence (XAI) has emerged to address the black-box problem of making AI systems more interpretable and transparent so stakeholders can trust, verify, and act upon AI-based outcomes. Researcher have come up with various techniques to foster XAI in Software Development Lifecycle. However, there are gaps in the application of XAI in Software Engineering phases. Literature shows that 68% of XAI in Software Engineering research focused on maintenance as opposed to 8% on software management and requirements [7]. In this paper we present a comprehensive survey of the applications of XAI methods (e.g., concept-based explanations, LIME/SHAP, rule extraction, attention mechanisms, counterfactual explanations, example-based explanations) to the different phases of Software Development Lifecycles (SDLC) mainly requirements elicitation, design and development, testing and deployment, and evolution. To the best of our knowledge, this paper presents the first comprehensive survey of XAI techniques for every phase of the Software Development Life Cycle (SDLC). In doing so, we aim to promote explainable AI in Software Engineering and facilitate the use of complex AI models in AI-driven software development. View details
    “Does the cafe entrance look accessible? Where is the door?” Towards Geospatial AI Agents for Visual Inquiries
    Jared Hwang
    Zeyu Wang
    John S. O'Meara
    Xia Su
    William Huang
    Yang Zhang
    Alex Fiannaca
    ICCV'25 Workshop "Vision Foundation Models and Generative AI for Accessibility: Challenges and Opportunities" (2025)
    Preview abstract Interactive digital maps have revolutionized how people travel and learn about the world; however, they rely on preexisting structured data in GIS databases (e.g., road networks, POI indices), limiting their ability to address geovisual questions related to what the world looks like. We introduce our vision for Geo-Visual Agents—multimodal AI agents capable of understanding and responding to nuanced visual-spatial inquiries about the world by analyzing large-scale repositories of geospatial images, including streetscapes (e.g., Google Street View), place-based photos (e.g., TripAdvisor, Yelp), and aerial imagery (e.g., satellite photos) combined with traditional GIS data sources. We define our vision, describe sensing and interaction approaches, provide three exemplars, and enumerate key challenges and opportunities for future work. View details
    Preview abstract Initially conceived as a way to explain memory sharing in romantic couples, the concept of transactive memory systems (TMS) has been adopted by organizational psychology, information management, and other fields of study to examine team performance in corporate settings. While findings highlight a clear advantage for humans teams with TMS, it's not evident if AI-human teams could also develop such a psychological dynamic. This paper considers AI-human interaction through the lens of TMS and identifies potential opportunities for improvement in this area. View details
    Probing non-equilibrium topological order on a quantum processor
    Melissa Will
    Tyler Cochran
    Bernhard Jobst
    Norhan Eassa
    Michael Knap
    Adam Gammon-Smith
    Frank Pollmann
    Nature, 645 (2025), 348–353
    Preview abstract Out-of-equilibrium phases in many-body systems constitute a new paradigm in quantum matter—they exhibit dynamical properties that may otherwise be forbidden by equilibrium thermodynamics. Among these non-equilibrium phases are periodically driven (Floquet) systems, which are generically difficult to simulate classically because of their high entanglement. Here we realize a Floquet topologically ordered state on an array of superconducting qubits. We image the characteristic dynamics of its chiral edge modes and characterize its emergent anyonic excitations. Devising an interferometric algorithm allows us to introduce and measure a bulk topological invariant to probe the dynamical transmutation of anyons for system sizes up to 58 qubits. Our work demonstrates that quantum processors can provide key insights into the thus-far largely unexplored landscape of highly entangled non-equilibrium phases of matter. View details