Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 553 publications
    Multimodal Modeling for Spoken Language Identification
    Shikhar Bharadwaj
    Sriram (Sri) Ganapathy
    Sid Dalmia
    Wei Han
    Yu Zhang
    Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024) (2024)
    Preview abstract Spoken language identification refers to the task of automatically predicting the spoken language in a given utterance. Conventionally, it is modeled as a speech-based language identification task. Prior techniques have been constrained to a single modality; however in the case of video data there is a wealth of other metadata that may be beneficial for this task. In this work, we propose MuSeLI, a Multimodal Spoken Language Identification method, which delves into the use of various metadata sources to enhance language identification. Our study reveals that metadata such as video title, description and geographic location provide substantial information to identify the spoken language of the multimedia recording. We conduct experiments using two diverse public datasets of YouTube videos, and obtain state-of-the-art results on the language identification task. We additionally conduct an ablation study that describes the distinct contribution of each modality for language recognition. View details
    Preview abstract We present StreamVC, a streaming voice conversion solution that preserves the content and prosody of any source speech while matching the voice timbre from any target speech. Unlike previous approaches, StreamVC produces the resulting waveform at low latency from the input signal even on a mobile platform, making it applicable to real-time communication scenarios like calls and video conferencing, and addressing use cases such as voice anonymization in these scenarios. Our design leverages the architecture and training strategy of the SoundStream neural audio codec for lightweight high-quality speech synthesis. We demonstrate the feasibility of learning soft speech units causally, as well as the effectiveness of supplying whitened fundamental frequency information to improve pitch stability without leaking the source timbre information. View details
    Preview abstract This paper presents NOMAD (Non-Matching Audio Distance), a differentiable perceptual similarity metric that measures the distance of a degraded signal against non-matching references. The proposed method is based on learning deep feature embeddings via a triplet loss guided by the Neurogram Similarity Index Measure (NSIM) to capture degradation intensity. During inference, the similarity score between any two audio samples is computed through Euclidean distance of their embeddings. NOMAD is fully unsupervised and can be used in general perceptual audio tasks for audio analysis e.g. quality assessment and generative tasks such as speech enhancement and speech synthesis. The proposed method is evaluated with 3 tasks. Ranking degradation intensity, predicting speech quality, and as a loss function for speech enhancement. Results indicate NOMAD outperforms other non-matching reference approaches in both ranking degradation intensity and quality assessment, exhibiting competitive performance with full-reference audio metrics. NOMAD demonstrates a promising technique that mimics human capabilities in assessing audio quality with non-matching references to learn perceptual embeddings without the need for human-generated labels. View details
    Preview abstract End-to-end models for speech recognition and speech synthesis have many benefits, but we argue they also face a unique set of challenges not encountered in conventional multi-stage hybrid systems, which relied on the explicit injection of linguistic knowledge through resources such as phonemic dictionaries and verbalization grammars. These challenges include handling words with unusual grapheme-to-phoneme correspondences, converting between written forms like ‘12’ and spoken forms such as ‘twelve’, and contextual disambiguation of homophones or homographs. We describe the mitigation strategies that have been used for these problems in end-to-end systems, either implicitly or explicitly, and call out that the most commonly used mitigation techniques are likely incompatible with newly emerging approaches that use minimal amounts of supervised audio training data. We review best-of-both-world approaches that allow the use of end-to-end models combined with traditional linguistic resources, which we show are increasingly straightforward to create at scale, and close with an optimistic outlook for bringing speech technologies to many more languages by combining these strands of research. View details
    USM-SCD: USM-Based Multilingual Speaker Change Detection
    Yongqiang Wang
    Jason Pelecanos
    Yu Zhang
    Yiling Huang
    Han Lu
    ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 11801-11805
    Preview abstract We introduce a multilingual speaker change detection model (USM- SCD) that can simultaneously detect speaker turns and perform ASR for 96 languages. This model is adapted from a speech foundation model trained on a large quantity of supervised and unsupervised data, demonstrating the utility of fine-tuning from a large generic foundation model for a downstream task. We analyze the performance of this multilingual speaker change detection model through a series of ablation studies. We show that the USM-SCD model can achieve more than 75% average speaker change detection F1 score across a test set that consists of data from 96 languages. On American English, the USM-SCD model can achieve an 85.8% speaker change detection F1 score across various public and internal test sets, beating the previous monolingual baseline model by 21% relative. We also show that we only need to fine-tune one-quarter of the trainable model parameters to achieve the best model performance. The USM-SCD model exhibits state-of-the-art ASR quality compared with a strong public ASR baseline, making it suitable to handle both tasks with negligible additional computational cost. View details
    Automatic Speech Recognition of Conversational Speech in Individuals with Disordered Speech
    Bob MacDonald
    Rus Heywood
    Richard Cave
    Katie Seaver
    Antoine Desjardins
    Jordan Green
    Journal of Speech, Language, and Hearing Research (2024) (to appear)
    Preview abstract Purpose: This study examines the effectiveness of automatic speech recognition (ASR) for individuals with speech disorders, addressing the gap in performance between read and conversational ASR. We analyze the factors influencing this disparity and the effect of speech mode-specific training on ASR accuracy. Method: Recordings of read and conversational speech from 27 individuals with various speech disorders were analyzed using both (1) one speaker-independent ASR system trained and optimized for typical speech and (2) multiple ASR models that were personalized to the speech of the participants with disordered speech. Word Error Rates (WERs) were calculated for each speech mode, read vs conversational, and subject. Linear mixed-effect models were used to assess the impact of speech mode and disorder severity on ASR accuracy. We investigated nine variables, classified as technical, linguistic, or speech impairment factors, for their potential influence on the performance gap. Results: We found a significant performance gap between read and conversational speech in both personalized and unadapted ASR models. Speech impairment severity notably impacted recognition accuracy in unadapted models for both speech modes and in personalized models for read speech. Linguistic attributes of utterances were the most influential on accuracy, though atypical speech characteristics also played a role. Including conversational speech samples in model training notably improved recognition accuracy. Conclusions: We observed a significant performance gap in ASR accuracy between read and conversational speech for individuals with speech disorders. This gap was largely due to the linguistic complexity and unique characteristics of speech disorders in conversational speech. Training personalized ASR models using conversational speech significantly improved recognition accuracy, demonstrating the importance of domain-specific training and highlighting the need for further research into ASR systems capable of handling disordered conversational speech effectively. View details
    Preview abstract We present Spectron, a novel approach to adapting pre-trained large language models (LLMs) to perform spoken question answering (QA) and speech continuation. By endowing the LLM with a pre-trained speech encoder, our model becomes able to take speech inputs and generate speech outputs. The entire system is trained endto-end and operates directly on spectrograms, simplifying our architecture. Key to our approach is a training objective that jointly supervises speech recognition, text continuation, and speech synthesis using only paired speech-text pairs, enabling a ‘cross-modal’ chain-of-thought within a single decoding pass. Our method surpasses existing spoken language models in speaker preservation and semantic coherence. Furthermore, the proposed model improves upon direct initialization in retaining the knowledge of the original LLM as demonstrated through spoken QA datasets. We release our audio samples and spoken QA dataset via our website. View details
    Preview abstract Inter-sentence pauses are the silences that occur between sentences in a paragraph or a dialogue. They are an important aspect of long-form speech prosody, as they can affect the naturalness, intelligibility, and effectiveness of communication. However, the user perception of inter-sentence pauses in long-form speech synthesis is not well understood. Previous work often evaluates pause modelling in conjunction with other prosodic features making it hard to explicitly study how raters perceive differences in inter-sentence pause lengths. In this paper, using multiple text-to-speech (TTS) datasets that cover different content types, domains, and settings, we investigate how sensitive raters are to changes to the durations of inter-sentence pauses in long-form speech by comparing ground truth audio samples with renditions that have manipulated pause durations. This experimental design is meant to allow us to draw conclusions regarding the utility that can be expected from similar evaluations when applied to synthesized long-form speech. We find that, using standard evaluation methodologies, raters are not sensitive to variations in pause lengths unless these deviate exceedingly from the norms or expectations of the speech context. View details
    Preview abstract Japanese text-to-pronunciation modelling is a notoriously data-intensive problem. Japanese data sources are often only partially annotated, and use different annotation standards for pronunciation and word segmentation. This talk introduces a set of techniques that enable ingesting data that may be partially annotated, use arbitrary word segmentations, and use a variety of pronunciation annotation standards. View details
    Preview abstract This paper presents a novel approach to train a direct speech-to-speech translation model from monolingual datasets only in a fully unsupervised manner. The proposed approach combines back-translation, denoising autoencoder, and unsupervised embedding mapping techniques to achieve this goal. We demonstrate the effectiveness of the proposed approach by comparing it against a cascaded baseline using two Spanish and English datasets. The proposed approach achieved a significant improvement over the cascaded baseline on synthesized unpaired conversational and synthesized Common Voice $11$ datasets. View details
    Helpful Neighbors: Leveraging Neighbors in Geographic Feature Pronunciation
    Lion Jones
    Richard William Sproat
    Haruko Ishikawa
    Transactions of the Association for Computational Linguistics, 11 (2023), 85–101
    Preview abstract If one sees the place name Houston Mercer Dog Run in New York, how does one know how to pronounce it? Assuming one knows that Houston in New York is pronounced ˈhaʊstən and not like the Texas city (ˈhjuːstən), then one can probably guess that ˈhaʊstən is also used in the name of the dog park. We present a novel architecture that learns to use the pronunciations of neighboring names in order to guess the pronunciation of a given target feature. Applied to Japanese place names, we demonstrate the utility of the model to finding and proposing corrections for errors in Google Maps. To demonstrate the utility of this approach to structurally similar problems, we also report on an application to a totally different task: Cognate reflex prediction in comparative historical linguistics. A version of the code has been open-sourced. View details
    Preview abstract There is increasing concern that how researchers currently define and measure fairness is inadequate. Recent calls push to move beyond traditional concepts of fairness and consider related constructs through qualitative and community-based approaches, particularly for underrepresented communities most at-risk for AI harm. One in context, previous research has identified that voice technologies are unfair due to racial and age disparities. This paper uses voice technologies as a case study to unpack how Black older adults value and envision fair and equitable AI systems. We conducted design workshops and interviews with 16 Black older adults, exploring how participants envisioned voice technologies that better understand cultural context and mitigate cultural dissonance. Our findings identify tensions between what it means to have fair, inclusive, and representative voice technologies. This research raises questions about how and whether researchers can model cultural representation with large language models. View details
    Preview abstract This paper introduces a new speech dataset called ``LibriTTS-R'' designed for text-to-speech (TTS) use. It is derived by applying speech restoration to the LibriTTS corpus, which consists of 585 hours of speech data at 24 kHz sampling rate from 2,456 speakers and the corresponding texts. The constituent samples of LibriTTS-R are identical to those of LibriTTS, with only the sound quality improved. Experimental results show that the LibriTTS-R ground-truth samples showed significantly improved sound quality compared to those in LibriTTS. In addition, neural end-to-end TTS trained with LibriTTS-R achieved speech naturalness on par with that of the ground-truth samples. The corpus is freely available for download from [URL-HERE] View details
    Augmenting Transformer-Transducer Based Speaker Change Detection With Token-Level Training Loss
    Han Lu
    Yiling Huang
    ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    Preview abstract In this work we propose a novel token-based training strategy that improves Transformer-Transducer (T-T) based speaker change detection (SCD) performance. The conventional T-T based SCD model loss optimizes all output tokens equally. Due to the sparsity of the speaker changes in the training data, the conventional T-T based SCD model loss leads to sub-optimal detection accuracy. To mitigate this issue, we use a customized edit-distance algorithm to estimate the SCD false accept (FA) and false reject (FR) rates during training and optimize model parameters to minimize a weighted combination of the FA and FR, focusing the model on accurately predicting speaker changes. Experiments on a group of challenging real-world datasets show that the proposed training method can significantly improve the overall performance of the SCD model with the same number of parameters. View details
    Preview abstract Speech restoration (SR) is a task of converting degraded speech signals into high-quality ones. In this study, we propose a robust SR model called Miipher, and apply Miipher to a new SR application: increasing the amount of high-quality training data for speech generation by converting speech samples collected from the web to studio-quality. To make our SR model robust against various degradation, we use (i) a speech representation extracted from w2v-BERT for the input feature, and (ii) linguistic features extracted from transcripts and PnG-BERT for conditioning features. Experiments show that the proposed model (i) is robust against various audio degradation, (ii) can restore samples in the LJspeech dataset and improves the quality of text-to-speech (TTS) outputs without changing the model and hyper-parameters, and (iii) enable us to train a high-quality TTS model from restored speech samples collected from the web. View details