Domain-Agnostic Contrastive Representations for Learning from Label Proportions
Abstract
We study the weak supervision learning problem of Learning from
Label Proportions (LLP) where the goal is to learn an instance-level
classifier using proportions of various class labels in a bag – a
collection of input instances that often can be highly correlated. While
representation learning for weakly-supervised tasks is found to
be effective, they often require domain knowledge. To the best of
our knowledge, representation learning for tabular data
(unstructured data containing both continuous and categorical
features) are not studied. In this paper, we propose to learn diverse
representations of instances within the same bags to effectively
utilize the weak bag-level supervision. We propose a domain
agnostic LLP method, called "Self Contrastive Representation
Learning for LLP" (SelfCLR-LLP) that incorporates a novel self–
contrastive function as an auxiliary loss to learn representations on
tabular data for LLP. We show that diverse representations for
instances within the same bags aid efficient usage of the weak bag-
level LLP supervision. We evaluate the proposed method through
extensive experiments on real-world LLP datasets from e-commerce
applications to demonstrate the effectiveness of our proposed
SelfCLR-LLP.
Label Proportions (LLP) where the goal is to learn an instance-level
classifier using proportions of various class labels in a bag – a
collection of input instances that often can be highly correlated. While
representation learning for weakly-supervised tasks is found to
be effective, they often require domain knowledge. To the best of
our knowledge, representation learning for tabular data
(unstructured data containing both continuous and categorical
features) are not studied. In this paper, we propose to learn diverse
representations of instances within the same bags to effectively
utilize the weak bag-level supervision. We propose a domain
agnostic LLP method, called "Self Contrastive Representation
Learning for LLP" (SelfCLR-LLP) that incorporates a novel self–
contrastive function as an auxiliary loss to learn representations on
tabular data for LLP. We show that diverse representations for
instances within the same bags aid efficient usage of the weak bag-
level LLP supervision. We evaluate the proposed method through
extensive experiments on real-world LLP datasets from e-commerce
applications to demonstrate the effectiveness of our proposed
SelfCLR-LLP.