Effective Large Language Model Adaptation for Improved Grounding
Abstract
Large language models (LLMs) have achieved remarkable advancements in natural language understanding, generation, and manipulation of text-based data. However, one major issue towards their widespread deployment in the real world is that they can generate "hallucinated" answers that are not factual. Towards this end, this paper focuses on improving grounding from a holistic perspective with a novel framework, AGREE. We start with the design of a test time adaptation capability that takes into account the support information generated in self-grounded responses. To effectively enable this capability, we propose that the model tuning needs to be redesigned with a novel tuning objective mimicking the test time adaptation setup for grounding. This tuning on top of the pre-trained LLMs requires small amount of data that need to be constructed in a particular way to learn the grounding information, for which we introduce a data construction method. Our results show that AGREE pushes the state-of-the-art in grounding, demonstrated across many datasets.