Hidden Interfaces for Ambient Computing: Enabling Interaction in Everyday Materials through High-brightness Visuals on Low-cost Matrix Displays

Alex Olwal
CHI 2022, ACM

Abstract

Consumer electronics are increasingly using everyday materials to blend into home environments, often using LEDs or symbol displays under textile meshes. Our surveys (n=1499 and n=1501) show interest in interactive graphical displays for hidden interfaces --- however, covering such displays significantly limits brightness, material possibilities and legibility.

To overcome these limitations, we leverage parallel rendering to enable ultrabright graphics that can pass through everyday materials. We unlock expressive hidden interfaces using rectilinear graphics on low-cost, mass-produced passive-matrix OLED displays. A technical evaluation across materials, shapes and display techniques, suggests 3.6--40X brightness increase compared to more complex active-matrix OLEDs.

We present interactive prototypes that blend into wood, textile, plastic and mirrored surfaces. Survey feedback (n=1572) on our prototypes suggests that smart mirrors are particularly desirable. A lab evaluation (n=11) reinforced these findings and allowed us to also characterize performance from hands-on interaction with different content, materials and under varying lighting conditions.