Plex: Towards Reliability using Pretrained Large Model Extensions

Du Phan
Mark Patrick Collier
Zi Wang
Zelda Mariet
Clara Huiyi Hu
Neil Band
Tim G. J. Rudner
Karan Singhal
Joost van Amersfoort
Andreas Christian Kirsch
Rodolphe Jenatton
Honglin Yuan
Kelly Buchanan
D. Sculley
Yarin Gal
ICML 2022 Pre-training Workshop (2022)
Google Scholar

Abstract

A recent trend in artificial intelligence (AI) is the use of pretrained models for language and vision tasks, which has achieved extraordinary performance but also puzzling failures. Examining tasks that probe the model’s abilities in diverse ways is therefore critical to the field. In this paper, we explore the \emph{reliability} of models, where we define a reliable model as one that not only achieves strong predictive performance but also performs well consistently over many decision-making tasks such as uncertainty (e.g., selective prediction, open set recognition), robust generalization (e.g., accuracy and scoring rules such as log-likelihood on in- and out-of-distribution datasets), and adaptation (e.g., active learning, few-shot learning). We devise 11 types of tasks over 36 datasets in order to evaluate different aspects of reliability on both vision and language domains. To improve reliability, we developed ViT-Plex and T5-Plex, \emph{p}retrained \emph{l}arge-model \emph{ex}tensions (henceforth abbreviated as \emph{plex}) for vision and language modalities. Plex greatly improves the state-of-the-art across tasks, and as a pretrained model Plex unifies the traditional protocol of designing and tuning one model for each reliability task. We demonstrate scaling effects over model sizes and pretraining dataset sizes up to 4 billion examples. We also demonstrate Plex’s capabilities on new tasks including zero-shot open set recognition, few-shot uncertainty, and uncertainty in conversational language understanding.

Research Areas