The Cost of Consistency: Submodular Maximization with Constant Recourse

Paul Duetting
Federico Fusco
Ashkan Norouzi Fard
Ola Svensson
Proceedings of the 57th Annual ACM Symposium on Theory of Computing (2025), 1406–1417

Abstract

In this work, we study online submodular maximization and how the requirement of maintaining a stable solution impacts the approximation. In particular, we seek bounds on the best-possible
approximation ratio that is attainable when the algorithm is allowed to make, at most, a constant number of updates per step. We show a tight information-theoretic bound of $2/3$ for general monotone submodular functions and an improved (also tight) bound of $3/4$ for coverage functions. Since both these bounds are attained by non poly-time algorithms, we also give a poly-time randomized algorithm that achieves a $0.51$-approximation. Combined with an
information-theoretic hardness of $1/2$ for deterministic algorithms from prior work, our work thus shows a separation between deterministic and randomized algorithms, both information theoretically and for poly-time algorithms.