Unsupervised Learning of Object Structure and Dynamics from Videos

Matthias Minderer
Honglak Lee
NeurIPS (2019)

Abstract

Extracting and predicting object structure and dynamics from videos without
supervision is a major challenge in machine learning. To address this challenge,
we adopt a keypoint-based image representation and learn a stochastic dynamics
model of the keypoints. Future frames are reconstructed from the keypoints and
a reference frame. By modeling dynamics in the keypoint coordinate space, we
achieve stable learning and avoid compounding of errors in pixel space. Our
method improves upon unstructured representations both for pixel-level video
prediction and for downstream tasks requiring object-level understanding of motion
dynamics. We evaluate our model on diverse datasets: a multi-agent sports dataset,
the Human3.6M dataset, and datasets based on continuous control tasks from
the DeepMind Control Suite. The spatially structured representation outperforms
unstructured representations on a range of motion-related tasks such as object
tracking, action recognition and reward prediction.