Michael Riley

Michael Riley

Michael Riley has a B.S., M.S., and Ph.D. from MIT, all in computer science. He began his career at Bell Labs and AT&T Labs where he, together with Mehryar Mohri and Fernando Pereira, introduced and developed the theory and use of weighted finite-state transducers (WFSTs) in speech and language. He is currently distinguished research scientist at Google, Inc. His interests include speech and natural language processing, machine learning, and information retrieval. He is a principal author of the OpenFst library He manages a group with expertise that includes speech recognition and synthesis, NLP, information retrieval, image processing, algorithms, machine learning and privacy. He is an IEEE and ISCA Fellow.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract This paper explores ways to improve a two-pass speech recognition system when the first-pass is hybrid autoregressive transducer model and the second-pass is a neural language model. The main focus is on the scores provided by each of these models, their quantitative analysis, how to improve them and the best way to integrate them with the objective of better recognition accuracy. Several analysis are presented to show the importance of the choice of the integration weights for combining the first-pass and the second-pass scores. A sequence level weight estimation model along with four training criteria are proposed which allow adaptive integration of the scores per acoustic sequence. The effectiveness of this algorithm is demonstrated by constructing and analyzing models on the Librispeech data set. View details
    Preview abstract We introduce a framework for adapting a virtual keyboard to individual user behavior by modifying a Gaussian spatial model to use personalized key center offset means and, optionally, learned covariances. Through numerous real-world studies, we determine the importance of training data quantity and weights, as well as the number of clusters into which to group keys to avoid overfitting. While past research has shown potential of this technique using artificially-simple virtual keyboards and games or fixed typing prompts, we demonstrate effectiveness using the highly-tuned Gboard app with a representative set of users and their real typing behaviors. Across a variety of top languages,we achieve small-but-significant improvements in both typing speed and decoder accuracy. View details
    Preview abstract Weighted finite automata (WFA) are often used to represent probabilistic models, such as n- gram language models, since they are efficient for recognition tasks in time and space. The probabilistic source to be represented as a WFA, however, may come in many forms. Given a generic probabilistic model over sequences, we propose an algorithm to approximate it as a weighted finite automaton such that the Kullback-Leiber divergence between the source model and the WFA target model is minimized. The proposed algorithm involves a counting step and a difference of convex optimization step, both of which can be performed efficiently. We demonstrate the usefulness of our approach on various tasks, including distilling n-gram models from neural models, building compact language models, and building open-vocabulary character models. The algorithms used for these experiments are available in an open-source software library. View details
    Preview abstract On-device end-to-end (E2E) models have shown improvementsover a conventional model on Search test sets in both quality, as measured by Word Error Rate (WER), and latency, measured by the time the result is finalized after the user stops speaking. However, the E2E model is trained on a small fraction of audio-text pairs compared to the 100 billion text utterances that a conventional language model (LM) is trained with. Thus E2E models perform poorly on rare words and phrases. In this paper, building upon the two-pass streaming Cascaded Encoder E2E model, we explore using a Hybrid Autoregressive Transducer (HAT) factorization to better integrate an on-device neural LM trained on text-only data. Furthermore, to further improve decoder latency we introduce a non-recurrent embedding decoder, in place of the typical LSTM decoder, into the Cascaded Encoder model. Overall, we present a streaming on-device model that incorporates an external neural LM and outperforms the conventional model in both search and rare-word quality, as well as latency, and is 318X smaller. View details
    Hybrid Autoregressive Transducer (HAT)
    David Rybach
    ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, pp. 6139-6143
    Preview abstract This paper proposes and evaluates the hybrid autoregressive transducer (HAT) model, a time-synchronous encoder-decoder model that preserves the modularity of conventional automatic speech recognition systems. The HAT model provides a way to measure the quality of the internal language model that can be used to decide whether inference with an external language model is beneficial or not. We evaluate our proposed model on a large-scale voice search task. Our experiments show significant improvements in WER compared to the state-of-the-art approaches. View details
    Preview abstract Weighted finite automata (WFA) are often used to represent probabilistic models, such as n-gram language models, since they are efficient for recognition tasks in time and space. The probabilistic source to be represented as a WFA, however, may come in many forms. Given a generic probabilistic model over sequences, we propose an algorithm to approximate it as a weighted finite automaton such that the Kullback-Leibler divergence between the source model and the WFA target model is minimized. The proposed algorithm involves a counting step and a difference of convex optimization, both of which can be performed efficiently. We demonstrate the usefulness of our approach on some tasks including distilling n-gram models from neural models. View details
    Latin script keyboards for South Asian languages with finite-state normalization
    Vlad Schogol
    Proceedings of the 14th International Conference on Finite-State Methods and Natural Language Processing, Association for Computational Linguistics, Dresden, Germany (2019), pp. 108-117
    Preview abstract The use of the Latin script for text entry of South Asian languages is common, even though there is no standard orthography for these languages in the script. We explore several compact finite-state architectures that permit variable spellings of words during mobile text entry. We find that approaches making use of transliteration transducers provide large accuracy improvements over baselines, but that simpler approaches involving a compact representation of many attested alternatives yields much of the accuracy gain. This is particularly important when operating under constraints on model size (e.g., on inexpensive mobile devices with limited storage and memory for keyboard models), and on speed of inference, since people typing on mobile keyboards expect no perceptual delay in keyboard responsiveness. View details
    Preview abstract We propose algorithms to train production-quality n-gram language models using federated learning. Federated learning is a machine learning technique to train global models to be used on portable devices such as smart phones, without the users' data ever leaving their devices. This is especially relevant for applications handling privacy-sensitive data, such as virtual keyboards. While the principles of federated learning are fairly generic, its methodology assumes that the underlying models are neural networks. However, virtual keyboards are typically powered by n-gram language models, mostly for latency reasons. We propose to train a recurrent neural network language model using the decentralized "FederatedAveraging" algorithm directly on training and to approximating this federated model server-side with an n-gram model that can be deployed to devices for fast inference. Our technical contributions include novel ways of handling large vocabularies, algorithms to correct capitalization errors in user data, and efficient finite state transducer algorithms to convert word language models to word-piece language models and vice versa. The n-gram language models trained with federated learning are compared to n-grams trained with traditional server-based algorithms using A/B tests on tens of millions of users of a virtual keyboard. Results are presented for two languages, American English and Brazilian Portuguese. This work demonstrates that high-quality n-gram language models can be trained directly on client mobile devices without sensitive training data ever leaving the device. View details
    Algorithms for Weighted Finite Automata with Failure Transitions
    International Conference of Implementation and Applications of Automata (CIAA) (2018), pp. 46-58
    Preview abstract In this paper we extend some key weighted finite automata (WFA) algorithms to automata with failure transitions (phi-WFAs). Failure transitions, which are taken only when no immediate\ match is possible at a given state, are used to compactly epresent automata and have many applications. An efficient intersection algorithm and a shortest distance algorithm (over R+) are presented as well as a related algorithm to remove failure transitions from a phi-WFA. View details
    Preview abstract Recent interest in intelligent assistants has increased demand for Automatic Speech Recognition (ASR) systems that can utilize contextual information to adapt to the user’s preferences or the current device state. For example, a user might be more likely to refer to their favorite songs when giving a “music playing” command or request to watch a movie starring a particular favorite actor when giving a “movie playing” command. Similarly, when a device is in a “music playing” state, a user is more likely to give volume control commands. In this paper, we explore using semantic information inside the ASR word lattice by employing Named Entity Recognition (NER) to identify and boost contextually relevant paths in order to improve speech recognition accuracy. We use broad semantic classes comprising millions of entities, such as songs and musical artists, to tag relevant semantic entities in the lattice. We show that our method reduces Word Error Rate (WER) by 12.0% relative on a Google Assistant “media playing” commands test set, while not affecting WER on a test set containing commands unrelated to media. View details