
Vahab S. Mirrokni
Vahab Mirrokni is a Google Fellow and VP at Google Research, leading algorithm and optimization research groups at Google. These research teams include: market algorithms, large-scale graph mining, and
large-scale optimization. Previously he was a distinguished scientist and senior research director at Google. He received his PhD from MIT in 2005 and his B.Sc. from Sharif University of Technology in 2001. He joined Google Research in 2008, after research positions at Microsoft Research, MIT and Amazon.com. He is the co-winner of best paper awards at KDD, ACM EC, and SODA. His research areas include algorithms, distributed and stochastic optimization, and computational economics. Recently he has been working on various algorithmic problems in machine learning, online optimization and mechanism design, and large-scale graph-based learning . His full publication list by year can be found here . He also has an out-dated personal homepage.
Authored Publications
Sort By
Synthetic Text Generation for Training Large Language Models (LLMs) via Gradient Matching
Dang Nguyen
Zeman Li
Meisam Razaviyayn
Baharan Mirzasoleiman
International Conference on Machine Learning (ICML) (2025)
Preview abstract
Synthetic data has the potential to improve the performance, training efficiency, and privacy of
real training examples. Nevertheless, existing approaches for synthetic text generation are mostly heuristics and cannot generate human-readable text without compromising the privacy of real data, or provide performance guarantees for training Large Language Models (LLMs). In this work, we propose the first theoretically rigorous approach for generating synthetic human-readable text that provides convergence, performance, and privacy guarantees for fine-tuning LLMs on a target task. To do so, we leverage Alternating Direction Method of Multipliers (ADMM) that iteratively optimizes the embeddings of synthetic examples to match the noisy gradient of the target training or validation data, and maps them to a sequence of text tokens with low perplexity. In doing so, the generated synthetic text guarantees convergence of the model to a close neighborhood of the solution obtained by fine-tuning on real data and preserves their privacy. Experiments on various classification tasks confirm the effectiveness of our proposed approach. Our code is available at https://github.com/BigML-CS-UCLA/GRADMM.
View details
Procurement Auctions via Approximate Submodular Optimization
Amin Karbasi
Grigoris Velegkas
Forty-second International Conference on Machine Learning (2025)
Preview abstract
We study the problem of procurement auctions, in which an auctioneer seeks to acquire services from a group of strategic sellers with private costs. The quality of the services is measured through some \emph{submodular} function that is known to the auctioneer. Our goal is to design \emph{computationally efficient} procurement auctions that (approximately) maximize the difference between the quality of the acquired services and the total cost of the sellers, in a way that is incentive compatible (IC) and individual rational (IR) for the sellers, and generates non-negative surplus (NAS) for the auctioneer.
Leveraging recent results from the literature of \emph{non-positive} submodular function maximization, we design computationally efficient frameworks that transform submodular function optimization algorithms to \emph{mechanisms} that are IC and IR for the sellers, NAS for the auctioneer, and \emph{approximation-preserving}. Our frameworks are general and work both in the \emph{offline} setting where the auctioneer can observe the bids and the services of all the sellers simultaneously, and in the \emph{online} setting where the sellers arrive in an adversarial order and the auctioneer has to make an irrevocable decision whether to purchase their service or not. We further investigate whether it is possible to convert state-of-art submodular optimization algorithms into a descending auction. We focurs in the adversarial setting, meaning that the schedule of the descending prices is determined by an advesary. We show that a submodular optimization algorithm satisfying bi-criteria $(\alpha, 1)$-approximation in welfare can be effectively converted to a descending auction in the adversarial setting in if and only if $\alpha \leq \frac 1 2$. Our result highlights the importance of a carefully designed schedule of descending prices to effectively convert a submodular optimization algorithm satisfying bi-criteria $(\alpha, 1)$-approximation in welfare with $\alpha > \frac 1 2$ to a descending auction. We also further establish a connection between descending auctions and online submodular optimization algorithms.
We demonstrate the practical applications of our frameworks by instantiating them with different state-of-the-art submodular optimization algorithms and comparing their welfare performance through empirical experiments on publicly available datasets that consist of thousands of sellers.
View details
Preview abstract
Motivated by the growing demand for serving large language model inference requests, we study distributed load balancing for global serving systems with network latencies. We consider a fluid model in which continuous flows of requests arrive at different frontends and need to be routed to distant backends for processing whose processing rates are workload dependent. Network latencies can lead to long travel times for requests and delayed feedback from backends. The objective is to minimize the average latency of requests, composed of the network latency and the serving latency at the backends.
We introduce Distributed Gradient Descent Load Balancing (DGD-LB), a probabilistic routing algorithm in which each frontend adjusts the routing probabilities dynamically using gradient descent. Our algorithm is distributed: there is no coordination between frontends, except by observing the delayed impact other frontends have on shared backends. The algorithm uses an approximate gradient that measures the marginal impact of an additional request evaluated at a delayed system state. Equilibrium points of our algorithm minimize the centralized optimal average latencies, and we provide a novel local stability analysis showing that our algorithm converges to an optimal solution when started sufficiently close to that point. Moreover, we present sufficient conditions on the step-size of gradient descent that guarantee convergence in the presence of network latencies. Numerical experiments show that our algorithm is globally stable and optimal, confirm our stability conditions are nearly tight, and demonstrate that DGD-LB can lead to substantial gains relative to other load balancers studied in the literature when network latencies are large.
View details
Preview abstract
Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding x ∈ R^d per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark ColBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring.
In this paper, we introduce MUVERA (Multi-Vector Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality ε-approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5× fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10% improved recall with 90% lower latency.
View details
HyperAttention: Large-scale Attention in Linear Time
Amin Karbasi
Amir Zandieh
Insu Han
David Woodruff
HyperAttention: Long-context Attention in Near-Linear Time (2024) (to appear)
Preview abstract
In this paper, we introduce a novel approximate attention mechanism dubbed ``HyperAttention``. Despite the rapidly increasing size and complexity of contexts used with Large Language Models (LLM), there is still a dire lack of computationally efficient attention mechanisms scaling better than the naive quadratic time. HyperAttention addresses this gap: it delivers provably linear time complexity with respect to the size of the context, while only incurring a negligible loss in downstream quality. Distinctively, it integrates the principles of Locality Sensitive Hashing (LSH), for efficient detection of heavy elements, along with uniform column sampling, allowing for a good approximation both of the heavy and light components of the attention matrix. HyperAttention provably approximates the attention layer in \textit{linear time}, making it the first practical linear time approximate attention mechanism. Crucially, HyperAttention has a highly-modular design, allowing seamless integration of other rapid low-level implementations, most notably FlashAttention. Empirical evaluations indicate that HyperAttention surpasses the existing methods, achieving orders of magnitude speed-up when compared to prevalent state-of-the-art solutions such as Flash Attention. This breakthrough presents significant implications for enabling the scalability of LLMs to significantly larger contexts.
View details
PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses
Adel Javanmard
Proceedings of the 41st International Conference on Machine Learning (2024), pp. 21410-21429
Preview abstract
This work studies algorithms for learning from aggregate responses. We focus on the construction of aggregation sets (called \emph{bags} in the literature) for event-level loss functions. We prove for linear regression and generalized linear models (GLMs) that the optimal bagging problem reduces to one-dimensional size-constrained $k$-means clustering. Further, we theoretically quantify the advantage of using curated bags over random bags. We propose the \texttt{PriorBoost} algorithm, which iteratively forms increasingly homogenous bags with respect to (unseen) individual responses to improve model quality. We also explore label differential privacy for aggregate learning, and provide extensive experiments that demonstrate that \PriorBoost regularly achieves optimal quality, in contrast to non-adaptive algorithms for aggregate learning.
View details
Efficiency of the Generalized Second-Price Auction for Value Maximizers
Hanrui Zhang
Proceedings of the ACM on Web Conference 2024, 46–56
Preview abstract
We study the price of anarchy of the generalized second-price auction where bidders are value maximizers (i.e., autobidders). We show that in general the price of anarchy can be as bad as 0. For comparison, the price of anarchy of running VCG is 1/2 in the autobidding world. We further show a fined-grained price of anarchy with respect to the discount factors (i.e., the ratios of click probabilities between lower slots and the highest slot in each auction) in the generalized second-price auction, which highlights the qualitative relation between the smoothness of the discount factors and the efficiency of the generalized second-price auction.
View details
Individual Welfare Guarantees in the Autobidding World with Machine-learned Advice
Negin Golrezaei
Patrick Jaillet
Jason Cheuk Nam Liang
Proceedings of the ACM on Web Conference 2024, 267–275
Preview abstract
Online advertising channels commonly focus on maximizing total advertiser welfare to enhance channel health, and previous literature has studied augmenting ad auctions with machine learning predictions on advertiser values (also known asmachine-learned advice ) to improve total welfare. Yet, such improvements could come at the cost of individual bidders' welfare and do not shed light on how particular advertiser bidding strategies impact welfare. Motivated by this, we present an analysis on an individual bidder's welfare loss in the autobidding world for auctions with and without machine-learned advice, and also uncover how advertiser strategies relate to such losses. In particular, we demonstrate how ad platforms can utilize ML advice to improve welfare guarantee on the aggregate and individual bidder level by setting ML advice as personalized reserve prices when the platform consists ofautobidders who maximize value while respecting a return on ad spend (ROAS) constraint. Under parallel VCG auctions with such ML advice-based reserves, we present a worst-case welfare lower-bound guarantee for an individual autobidder, and show that the lower-bound guarantee is positively correlated with ML advice quality as well as the scale of bids induced by the autobidder's bidding strategies. Further, we show that no truthful, and possibly randomized mechanism with anonymous allocations can achieve universally better individual welfare guarantees than VCG, in the presence of personalized reserves based on ML-advice of equal quality. Moreover, we extend our individual welfare guarantee results to generalized first price (GFP) and generalized second price (GSP) auctions. Finally, we present numerical studies using semi-synthetic data derived from ad auction logs of a search ad platform to showcase improvements in individual welfare when setting personalized reserve prices with ML-advice.
View details
Non-uniform Bid-scaling and Equilibria for Different Auctions: An Empirical Study
Proceedings of the ACM on Web Conference 2024, 256–266
Preview abstract
In recent years, the growing adoption of autobidding has motivated the study of auction design with value-maximizing auto-bidders. It is known that under mild assumptions, uniform bid-scaling is an optimal bidding strategy in truthful auctions, e.g., Vickrey-Clarke-Groves auction (VCG), and the price of anarchy for VCG is 2. However, for other auction formats like First-Price Auction (FPA) and Generalized Second-Price auction (GSP), uniform bid-scaling may not be an optimal bidding strategy, and bidders have incentives to deviate to adopt strategies with non-uniform bid-scaling. Moreover, FPA can achieve optimal welfare if restricted to uniform bid-scaling, while its price of anarchy becomes 2 when non-uniform bid-scaling strategies are allowed.
All these price of anarchy results have been focused on welfare approximation in the worst-case scenarios. To complement theoretical understandings, we empirically study how different auction formats (FPA, GSP, VCG) with different levels of non-uniform bid-scaling perform in an autobidding world with a synthetic dataset for auctions. Our empirical findings include: * For both uniform bid-scaling and non-uniform bid-scaling, FPA is better than GSP and GSP is better than VCG in terms of both welfare and profit; * A higher level of non-uniform bid-scaling leads to lower welfare performance in both FPA and GSP, while different levels of non-uniform bid-scaling have no effect in VCG. Our methodology of synthetic data generation may be of independent interest.
View details
Mechanism Design for Large Language Models
Paul Duetting
Haifeng Xu
Proceedings of the ACM on Web Conference 2024, Association for Computing Machinery, New York, NY, USA, 144–155
Preview abstract
We investigate auction mechanisms for AI-generated content, focusing on applications like ad creative generation. In our model, agents' preferences over stochastically generated content are encoded as large language models (LLMs). We propose an auction format that operates on a token-by-token basis, and allows LLM agents to influence content creation through single dimensional bids. We formulate two desirable incentive properties and prove their equivalence to a monotonicity condition on output aggregation. This equivalence enables a second-price rule design, even absent explicit agent valuation functions. Our design is supported by demonstrations on a publicly available LLM.
View details