Yuan Deng
Yuan Deng is a Research Scientist at Google Research New York City. His research is broadly situated at the interface between economics and computer science (aka. algorithmic game theory), mainly including dynamic mechanism design (how to design auctions for online advertisement markets) and learning in economic environments (e.g. online pricing for strategic agents and/or learning agents).
Authored Publications
Sort By
Procurement Auctions via Approximate Submodular Optimization
Amin Karbasi
Grigoris Velegkas
Forty-second International Conference on Machine Learning (2025)
Preview abstract
We study the problem of procurement auctions, in which an auctioneer seeks to acquire services from a group of strategic sellers with private costs. The quality of the services is measured through some \emph{submodular} function that is known to the auctioneer. Our goal is to design \emph{computationally efficient} procurement auctions that (approximately) maximize the difference between the quality of the acquired services and the total cost of the sellers, in a way that is incentive compatible (IC) and individual rational (IR) for the sellers, and generates non-negative surplus (NAS) for the auctioneer.
Leveraging recent results from the literature of \emph{non-positive} submodular function maximization, we design computationally efficient frameworks that transform submodular function optimization algorithms to \emph{mechanisms} that are IC and IR for the sellers, NAS for the auctioneer, and \emph{approximation-preserving}. Our frameworks are general and work both in the \emph{offline} setting where the auctioneer can observe the bids and the services of all the sellers simultaneously, and in the \emph{online} setting where the sellers arrive in an adversarial order and the auctioneer has to make an irrevocable decision whether to purchase their service or not. We further investigate whether it is possible to convert state-of-art submodular optimization algorithms into a descending auction. We focurs in the adversarial setting, meaning that the schedule of the descending prices is determined by an advesary. We show that a submodular optimization algorithm satisfying bi-criteria $(\alpha, 1)$-approximation in welfare can be effectively converted to a descending auction in the adversarial setting in if and only if $\alpha \leq \frac 1 2$. Our result highlights the importance of a carefully designed schedule of descending prices to effectively convert a submodular optimization algorithm satisfying bi-criteria $(\alpha, 1)$-approximation in welfare with $\alpha > \frac 1 2$ to a descending auction. We also further establish a connection between descending auctions and online submodular optimization algorithms.
We demonstrate the practical applications of our frameworks by instantiating them with different state-of-the-art submodular optimization algorithms and comparing their welfare performance through empirical experiments on publicly available datasets that consist of thousands of sellers.
View details
Preview abstract
Modern foundation models are trained on diverse datasets to enhance generalization across tasks and domains. A central challenge in this process is determining how to effectively mix and sample data from multiple sources. This naturally leads to a multi-task learning (MTL) perspective. While prior work in MTL has emphasized mitigating gradient conflicts, we observe that large-scale pre-training scenarios-such as multilingual or multi-domain training-often exhibit little to no gradient conflict. Motivated by this observation, we propose PiKE (Positive gradient interaction-based K task weights Estimator), an adaptive data mixing algorithm that dynamically adjusts sampling weights during training. PiKE exploits non-conflicting gradient interactions to minimize a near-tight upper bound on the average loss decrease at each step, while incurring negligible computational overhead. We provide theoretical convergence guarantees and show that PiKE outperforms static and nonadaptive mixing baselines. Furthermore, we extend PiKE to promote balanced learning across tasks. Extensive experiments on large-scale language model pre-training confirm that PiKE achieves faster convergence and improved downstream performance compared to existing approaches.
View details
Preview abstract
Fine-tuning language models (LMs) with the standard Adam optimizer often demands excessive memory, limiting accessibility. The "in-place" version of Stochastic Gradient Descent (IP-SGD) and Memory-Efficient Zeroth-order Optimizer (MeZO) have been proposed as solutions to improve memory efficiency. However, IP-SGD still requires a decent amount of memory, and MeZO suffers from slow convergence and degraded final performance due to its zeroth-order nature. This paper introduces Addax, a novel method that improves both memory efficiency and algorithm performance of IP-SGD by integrating it with MeZO. Specifically, Addax computes the zeroth-order or first-order gradient of the data points in the mini-batch based on their memory consumption and combines zeroth- and first-order gradient estimates to obtain the updated direction in each step. By computing the zeroth-order order gradient of data points that require more memory and the first-order gradient of the ones that require less memory, Addax overcomes the slow convergence of MeZO and excessive memory requirement of IP-SGD. Additionally, the zeroth-order gradient acts as a regularizer for the first-order gradient, further enhancing the model's final performance. Theoretically, we establish the convergence of Addax under mild assumptions, demonstrating faster convergence and less restrictive hyperparameter choices than MeZO. Our extensive experiments with diverse LMs and tasks show that Addax consistently outperforms MeZO in terms of accuracy and convergence speed, while having a comparable memory footprint. In particular, our experiments using one A100 GPU on OPT-13B model reveal that, on average, Addax outperforms MeZO in terms of accuracy/F1 score by 14%, and runs 15x faster, while having a comparable memory footprint to MeZO. In our experiments on the larger OPT-30B model, on average, Addax outperforms MeZO in terms of accuracy/F1 score by >16% and runs 30x faster on a single H100 GPU. Moreover, Addax surpasses the performance of standard fine-tuning approaches, such as IP-SGD and Adam, in most tasks in terms of Accuracy/F1 score with significantly less memory requirement.
View details
Preview abstract
The recent increasing adoption of autobidding has inspired the growing interest in analyzing the performance of classic mechanism with value-maximizing auto-bidders both theoretically and empirically. It is known that optimal welfare can be obtained in first-price auctions if auto-bidders are restricted to uniform bid-scaling and the price of anarchy is $2$ when non-uniform bid-scaling strategies are allowed.
In this paper, we provide a fine-grained price of anarchy analysis for non-uniform bid-scaling strategies in first-price auctions, demonstrating the reason why more powerful (individual) non-uniform bid-scaling strategies may lead to worse (aggregated) performance in social welfare. Our theoretical results match recent empirical findings that a higher level of non-uniform bid-scaling leads to lower welfare performance in first-price auctions.
View details
Non-uniform Bid-scaling and Equilibria for Different Auctions: An Empirical Study
Proceedings of the ACM on Web Conference 2024, 256–266
Preview abstract
In recent years, the growing adoption of autobidding has motivated the study of auction design with value-maximizing auto-bidders. It is known that under mild assumptions, uniform bid-scaling is an optimal bidding strategy in truthful auctions, e.g., Vickrey-Clarke-Groves auction (VCG), and the price of anarchy for VCG is 2. However, for other auction formats like First-Price Auction (FPA) and Generalized Second-Price auction (GSP), uniform bid-scaling may not be an optimal bidding strategy, and bidders have incentives to deviate to adopt strategies with non-uniform bid-scaling. Moreover, FPA can achieve optimal welfare if restricted to uniform bid-scaling, while its price of anarchy becomes 2 when non-uniform bid-scaling strategies are allowed.
All these price of anarchy results have been focused on welfare approximation in the worst-case scenarios. To complement theoretical understandings, we empirically study how different auction formats (FPA, GSP, VCG) with different levels of non-uniform bid-scaling perform in an autobidding world with a synthetic dataset for auctions. Our empirical findings include: * For both uniform bid-scaling and non-uniform bid-scaling, FPA is better than GSP and GSP is better than VCG in terms of both welfare and profit; * A higher level of non-uniform bid-scaling leads to lower welfare performance in both FPA and GSP, while different levels of non-uniform bid-scaling have no effect in VCG. Our methodology of synthetic data generation may be of independent interest.
View details
Preview abstract
We study the price of anarchy of the first-price auction in the autobidding world, where bidders can be either utility maximizers (i.e., traditional bidders) or value maximizers (i.e., autobidders). We show that with autobidders only, the price of anarchy of the first-price auction is 1/2, and with both kinds of bidders, the price of anarchy degrades to about 0.457 (the precise number is given by an optimization). These results complement the recent result by Jin and Lu [2022] showing that the price of anarchy of the first-price auction with traditional bidders only is $1−1/e^2$. We further investigate a setting where the seller can utilize machine-learned advice to improve the efficiency of the auctions. There, we show that as the accuracy of the advice increases, the price of anarchy improves smoothly from about 0.457 to 1.
View details
Optimal Mechanisms for a Value Maximizer: The Futility of Screening Targets
Proceedings of the 25th ACM Conference on Economics and Computation (EC) (2024)
Preview abstract
Motivated by the increased adoption of autobidding algorithms in internet advertising markets, we study the design of optimal mechanisms for selling items to a value-maximizing buyer with a return-on-spend constraint. The buyer's values and target ratio in the return-on-spend constraint are private. We restrict attention to deterministic sequential screening mechanisms that can be implemented as a menu of prices paid for purchasing an item or not. The main result of this paper is to provide a characterization of an optimal mechanism. Surprisingly, we show that the optimal mechanism does not require target screening, i.e., offering a single pair of prices is optimal for the seller. The optimal mechanism is a subsidized posted price that provides a subsidy to the buyer to encourage participation and then charges a fixed unit price for each item sold. The seller's problem is a challenging non-linear mechanism design problem, and a key technical contribution of our work is to provide a novel approach to analyze non-linear pricing contracts.
View details
Auto-bidding and Auctions in Online Advertising: A Survey
Ashwinkumar Badanidiyuru Varadaraja
Christopher Liaw
Haihao (Sean) Lu
Andres Perlroth
Georgios Piliouras
Ariel Schvartzman
Kelly Spendlove
Hanrui Zhang
Mingfei Zhao
ACM SIGecom Exchanges, 22 (2024)
Preview abstract
In this survey, we summarize recent developments in research fueled by the growing adoption of automated bidding strategies in online advertising. We explore the challenges and opportunities that have arisen as markets embrace this autobidding and cover a range of topics in this area, including bidding algorithms, equilibrium analysis and efficiency of common auction formats, and optimal auction design.
View details
Individual Welfare Guarantees in the Autobidding World with Machine-learned Advice
Negin Golrezaei
Patrick Jaillet
Jason Cheuk Nam Liang
Proceedings of the ACM on Web Conference 2024, 267–275
Preview abstract
Online advertising channels commonly focus on maximizing total advertiser welfare to enhance channel health, and previous literature has studied augmenting ad auctions with machine learning predictions on advertiser values (also known asmachine-learned advice ) to improve total welfare. Yet, such improvements could come at the cost of individual bidders' welfare and do not shed light on how particular advertiser bidding strategies impact welfare. Motivated by this, we present an analysis on an individual bidder's welfare loss in the autobidding world for auctions with and without machine-learned advice, and also uncover how advertiser strategies relate to such losses. In particular, we demonstrate how ad platforms can utilize ML advice to improve welfare guarantee on the aggregate and individual bidder level by setting ML advice as personalized reserve prices when the platform consists ofautobidders who maximize value while respecting a return on ad spend (ROAS) constraint. Under parallel VCG auctions with such ML advice-based reserves, we present a worst-case welfare lower-bound guarantee for an individual autobidder, and show that the lower-bound guarantee is positively correlated with ML advice quality as well as the scale of bids induced by the autobidder's bidding strategies. Further, we show that no truthful, and possibly randomized mechanism with anonymous allocations can achieve universally better individual welfare guarantees than VCG, in the presence of personalized reserves based on ML-advice of equal quality. Moreover, we extend our individual welfare guarantee results to generalized first price (GFP) and generalized second price (GSP) auctions. Finally, we present numerical studies using semi-synthetic data derived from ad auction logs of a search ad platform to showcase improvements in individual welfare when setting personalized reserve prices with ML-advice.
View details
Efficiency of the Generalized Second-Price Auction for Value Maximizers
Hanrui Zhang
Proceedings of the ACM on Web Conference 2024, 46–56
Preview abstract
We study the price of anarchy of the generalized second-price auction where bidders are value maximizers (i.e., autobidders). We show that in general the price of anarchy can be as bad as 0. For comparison, the price of anarchy of running VCG is 1/2 in the autobidding world. We further show a fined-grained price of anarchy with respect to the discount factors (i.e., the ratios of click probabilities between lower slots and the highest slot in each auction) in the generalized second-price auction, which highlights the qualitative relation between the smoothness of the discount factors and the efficiency of the generalized second-price auction.
View details