Aren Jansen
I am currently a Research Scientist at Google DeepMind, working on foundational research in multimodal language modeling and media generation. Before joining Google in 2015, I was a Research Scientist at the Johns Hopkins University Human Language Technology Center of Excellence, an Assistant Research Professor in the John Hopkins Department of Electrical and Computer Engineering, and a faculty member of the Center for Language and Speech Processing. My research has explored a wide range of ML topics that involve generative modeling, unsupervised/semi-supervised representation learning, information retrieval, content-based recommendation, latent structure discovery, time series modeling and analysis, and scalable algorithms for big data applications.
See my personal website or my Google scholar page for a full list of publications.
Research Areas
Authored Publications
Sort By
A Versatile Diffusion Transformer with Mixture of Noise Levels for Audiovisual Generation
Bradley Kim
Alonso Martinez
Yu-Chuan Su
Agrim Gupta
Lu Jiang
Jacob Walker
Neural Information Processing Systems (NeurIPS) (2024) (to appear)
Preview abstract
Training diffusion models for audiovisual sequences allows for a range of generation tasks by learning conditional distributions of various input-output combinations of the two modalities. Nevertheless, this strategy often requires training a separate model for each task which is expensive. Here, we propose a novel training approach to effectively learn arbitrary conditional distributions in the audiovisual space. Our key contribution lies in how we parameterize the diffusion timestep in the forward diffusion process. Instead of the standard fixed diffusion timestep, we propose applying variable diffusion timesteps across the temporal dimension and across modalities of the inputs. This formulation offers flexibility to introduce variable noise levels for various portions of the input, hence the term mixture of noise levels. We propose a transformer-based audiovisual latent diffusion model and show that it can be trained in a task-agnostic fashion using our approach to enable a variety of audiovisual generation tasks at inference time. Experiments demonstrate the versatility of our method in tackling cross-modal and multimodal interpolation tasks in the audiovisual space. Notably, our proposed approach surpasses baselines in generating temporally and perceptually consistent samples conditioned on the input.
View details
V2Meow: Meowing to the Visual Beat via Video-to-Music Generation
Chris Donahue
Dima Kuzmin
Judith Li
Kun Su
Mauro Verzetti
Qingqing Huang
Yu Wang
Vol. 38 No. 5: AAAI-24 Technical Tracks 5, AAAI Press (2024), pp. 4952-4960
Preview abstract
Video-to-music generation demands both a temporally localized high-quality listening experience and globally aligned video-acoustic signatures. While recent music generation models excel at the former through advanced audio codecs, the exploration of video-acoustic signatures has been confined to specific visual scenarios. In contrast, our research confronts the challenge of learning globally aligned signatures between video and music directly from paired music and videos, without explicitly modeling domain-specific rhythmic or semantic relationships. We propose V2Meow, a video-to-music generation system capable of producing high-quality music audio for a diverse range of video input types using a multi-stage autoregressive model. Trained on 5k hours of music audio clips paired with video frames mined from in-the-wild music videos, V2Meow is competitive with previous domain-specific models when evaluated in a zero-shot manner. It synthesizes high-fidelity music audio waveforms solely by conditioning on pre-trained general purpose visual features extracted from video frames, with optional style control via text prompts. Through both qualitative and quantitative evaluations, we demonstrate that our model outperforms various existing music generation systems in terms of visual-audio correspondence and audio quality. Music samples are available at tinyurl.com/v2meow.
View details
MusicLM: Generating Music From Text
Andrea Agostinelli
Mauro Verzetti
Antoine Caillon
Qingqing Huang
Neil Zeghidour
Christian Frank
under review (2023)
Preview abstract
We introduce MusicLM, a model generating high-fidelity music from text descriptions such as "a calming violin melody backed by a distorted guitar riff". MusicLM casts the process of conditional music generation as a hierarchical sequence-to-sequence modeling task, and it generates music at 24 kHz that remains consistent over several minutes. Our experiments show that MusicLM outperforms previous systems both in audio quality and adherence to the text description. Moreover, we demonstrate that MusicLM can be conditioned on both text and a melody in that it can transform whistled and hummed melodies according to the style described in a text caption. To support future research, we publicly release MusicCaps, a dataset composed of 5.5k music-text pairs, with rich text descriptions provided by human experts.
Further links: samples, MusicCaps dataset
View details
Shared computational principles for language processing in humans and deep language models
Ariel Goldstein
Zaid Zada
Eliav Buchnik
Amy Price
Bobbi Aubrey
Samuel A. Nastase
Harshvardhan Gazula
Gina Choe
Aditi Rao
Catherine Kim
Colton Casto
Lora Fanda
Werner Doyle
Daniel Friedman
Patricia Dugan
Lucia Melloni
Roi Reichart
Sasha Devore
Adeen Flinker
Liat Hasenfratz
Omer Levy,
Kenneth A. Norman
Orrin Devinsky
Uri Hasson
Nature Neuroscience (2022)
Preview abstract
Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language.
View details
Preview abstract
Many speech applications require understanding aspects other than content, such as recognizing emotion, detecting whether the speaker is wearing a mask, or distinguishing real from synthetic speech. Generally-useful paralinguistic speech representations offer one solution to these kinds of problems. In this work, we introduce a new state-of-the-art paralinguistic speech representation based on self-supervised training of a 600M+ parameter Conformer-based architecture. Linear classifiers trained on top of our best representation outperform previous results on 7 of 8 tasks we evaluate. We perform a larger comparison than has been done previously both in terms of number of embeddings compared and number of downstream datasets evaluated on. Our analyses into the role of time demonstrate the importance of context window size for many downstream tasks. Furthermore, while the optimal representation is extracted internally in the network, we demonstrate stable high performance across several layers, allowing a single universal representation to reach near optimal performance on all tasks.
View details
MuLan: A Joint Embedding of Music Audio and Natural Language
Qingqing Huang
Ravi Ganti
Judith Yue Li
Proceedings of the the 23rd International Society for Music Information Retrieval Conference (ISMIR) (2022) (to appear)
Preview abstract
Music tagging and content-based retrieval systems have traditionally been constructed using pre-defined ontologies covering a rigid set of music attributes or text queries. This paper presents MuLan: a first attempt at a new generation of acoustic models that link music audio directly to unconstrained natural language music descriptions. MuLan takes the form of a two-tower, joint audio-text embedding model trained using 44 million music recordings (370K hours) and weakly-associated, free-form text annotations. Through its compatibility with a wide range of music genres and text styles (including conventional music tags), the resulting audio-text representation subsumes existing ontologies while graduating to true zero-shot functionalities. We demonstrate the versatility of the MuLan embeddings with a range of experiments including transfer learning, zero-shot music tagging, language understanding in the music domain, and cross-modal retrieval applications.
View details
A Machine-Learning Based Objective Measure for ALS disease progression
Fernando Viera
Alan S Premasiri
Maeve McNally
Steven Perrin
npj Digital Medicine (2022)
Preview abstract
Amyotrophic Lateral Sclerosis (ALS) disease progression is usually measured using the subjective, questionnaire-based revised ALS Functional Rating Scale (ALSFRS-R). A purely objective measure for tracking disease progression would be a powerful tool for evaluating real-world drug effectiveness, efficacy in clinical trials, as well as identifying participants for cohort studies. Here we develop a machine learning based objective measure for ALS disease progression, based on voice samples and accelerometer measurements. The ALS Therapy Development Institute (ALS-TDI) collected a unique dataset of voice and accelerometer samples from consented individuals - 584 people living with ALS over four years. Participants carried out prescribed speaking and limb-based tasks. 542 participants contributed 5814 voice recordings, and 350 contributed 13009 accelerometer samples, while simultaneously measuring ALSFRS-R. Using the data from 475 participants, we trained machine learning (ML) models, correlating voice with bulbar-related FRS scores and accelerometer with limb related scores. On the test set (n=109 participants) the voice models achieved an AUC of 0.86 (95% CI, 0.847-0.884) , whereas the accelerometer models achieved a median AUC of 0.73 . We used the models and self-reported ALSFRS-R scores to evaluate the real-world effects of edaravone, a drug recently approved for use in ALS, on 54 test participants. In the test cohort, the digital data input into the ML models produced objective measures of progression rates over the duration of the study that were consistent with self-reported scores. This demonstrates the value of these tools for assessing both disease progression and potentially drug effects. In this instance, outcomes from edaravone treatment, both self-reported and digital-ML, resulted in highly variable outcomes from person to person.
View details
A Convolutional Neural Network for Automated Detection of Humpback Whale Song in a Diverse, Long-Term Passive Acoustic Dataset
Ann N. Allen
Matt Harvey
Karlina P. Merkens
Carrie C. Wall
Erin M. Oleson
Frontiers in Marine Science, 8 (2021), pp. 165
Preview abstract
Passive acoustic monitoring is a well-established tool for researching the occurrence, movements, and ecology of a wide variety of marine mammal species. Advances in hardware and data collection have exponentially increased the volumes of passive acoustic data collected, such that discoveries are now limited by the time required to analyze rather than collect the data. In order to address this limitation, we trained a deep convolutional neural network (CNN) to identify humpback whale song in over 187,000 h of acoustic data collected at 13 different monitoring sites in the North Pacific over a 14-year period. The model successfully detected 75 s audio segments containing humpback song with an average precision of 0.97 and average area under the receiver operating characteristic curve (AUC-ROC) of 0.992. The model output was used to analyze spatial and temporal patterns of humpback song, corroborating known seasonal patterns in the Hawaiian and Mariana Islands, including occurrence at remote monitoring sites beyond well-studied aggregations, as well as novel discovery of humpback whale song at Kingman Reef, at 5∘ North latitude. This study demonstrates the ability of a CNN trained on a small dataset to generalize well to a highly variable signal type across a diverse range of recording and noise conditions. We demonstrate the utility of active learning approaches for creating high-quality models in specialized domains where annotations are rare. These results validate the feasibility of applying deep learning models to identify highly variable signals across broad spatial and temporal scales, enabling new discoveries through combining large datasets with cutting edge tools.
View details
Preview abstract
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio.
Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks. A common approach for building multimodal models is to simply combine multiple of these modality-specific architectures using late-stage fusion of final representations or predictions (\textit{`late-fusion'}). Instead, we propose a new architecture that learns to model both unimodal and cross-modal information at earlier stages, without imposing any modality specific priors. We investigate two pathways for the exchange of cross-modal information, \textit{vertical attention} (by restricting crossmodal fusion to certain layers) and \textit{horizontal attention}, via the use of `fusion bottleneck' tokens, that encourage the model to extract and exchange relevant information between modalities in an efficient manner.
We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
View details
The Benefit of Temporally-Strong Labels in Audio Event Classification
Caroline Liu
Proceedings of ICASSP 2021 (2021)
Preview abstract
To reveal the importance of temporal precision in ground truth audio event labels, we collected precise (∼0.1 sec resolution) “strong” labels for a portion of the AudioSet dataset. We devised a temporally strong evaluation set (including explicit negatives of varying difficulty) and a small strong-labeled training subset of 67k clips (compared to the original dataset’s 1.8M clips labeled at 10 sec resolution). We show that fine-tuning with a mix of weak- and strongly-labeled data can substantially improve classifier performance, even when evaluated using only the original weak labels. For a ResNet50 architecture, d' on the strong evaluation data including explicit negatives improves from 1.13 to 1.41. The new labels are available as an update to AudioSet.
View details