Haim Kaplan
I work on data structures, algorithms, computational geometry and machine learning. Right now my main focus is on online learning, reinforcement learning, and clustering. Typically my research is theoretical. I am also a faculty at the school of computer science of Tel Aviv University.
Authored Publications
Sort By
Preview abstract
We introduce efficient differentially private (DP) algorithms for several linear algebraic tasks, including solving linear equalities over arbitrary fields, linear inequalities over the reals, and computing affine spans and convex hulls. As an application, we obtain efficient DP algorithms for learning halfspaces and affine subspaces. Our algorithms addressing equalities are strongly polynomial, whereas those addressing inequalities are weakly polynomial. Furthermore, this distinction is inevitable: no DP algorithm for linear programming can be strongly polynomial-time efficient.
View details
Preview abstract
We investigate Learning from Label Proportions (LLP), a partial information setting where examples in a training set are grouped into bags, and only aggregate label values in each bag are available. Despite the partial observability, the goal is still to achieve small regret at the level of individual examples. We give results on the sample complexity of LLP under square loss, showing that our sample complexity is essentially optimal. From an algorithmic viewpoint, we rely on carefully designed variants of Empirical Risk Minimization, and Stochastic Gradient Descent algorithms, combined with ad hoc variance reduction techniques. On one hand, our theoretical results improve in important ways on the existing literature on LLP, specifically in the way the sample complexity depends on the bag size. On the other hand, we validate our algorithmic solutions on several datasets, demonstrating improved empirical performance (better accuracy for less samples) against recent baselines.
View details
Preview abstract
In the private set union problem each user owns a bag of at most $k$ items (from some large universe of items), and we are interested in computing the union of the items in the bags of all of the users. This is trivial without privacy, but a differentially private algorithm must be careful about reporting items contained in only a small number of bags. We consider differentially private algorithms that always report a subset of the union, and define the utility of an algorithm to be the expected size of the subset that it reports.
Because the achievable utility varies significantly with the dataset, we introduce the utility ratio, which normalizes utility by a dataset-specific upper bound and characterizes a mechanism by its lowest normalized utility across all datasets. We then develop algorithms with guaranteed utility ratios and complement them with bounds on the best possible utility ratio. Prior work has shown that a single algorithm can be simultaneously optimal for all datasets when $k=1$, but we show that instance-optimal algorithms do not exist when $k>1$, and characterize how performance degrades as $k$ grows. At the same time, we design a private algorithm that achieves the maximum possible utility, regardless of $k$, when the item histogram matches a prior prediction (for instance, from a previous data release) and degrades gracefully with the $\ell_\infty$ distance between the prediction and the actual histogram when the prediction is imperfect.
View details
Preview abstract
We revisit the fundamental question of formally defining what constitutes a reconstruction attack. While often clear from the context, our exploration reveals that a precise definition is much more nuanced than it appears, to the extent that a single all-encompassing definition may not exist. Thus, we employ a different strategy and aim to "sandwich" the concept of reconstruction attacks by addressing two complementing questions: (i) What conditions guarantee that a given system is protected against such attacks? (ii) Under what circumstances does a given attack clearly indicate that a system is not protected? More specifically,
* We introduce a new definitional paradigm -- Narcissus Resiliency -- to formulate a security definition for protection against reconstruction attacks. This paradigm has a self-referential nature that enables it to circumvent shortcomings of previously studied notions of security. Furthermore, as a side-effect, we demonstrate that Narcissus resiliency captures as special cases multiple well-studied concepts including differential privacy and other security notions of one-way functions and encryption schemes.
* We formulate a link between reconstruction attacks and Kolmogorov complexity. This allows us to put forward a criterion for evaluating when such attacks are convincingly successful.
View details
Preview abstract
In this work we revisit an interactive variant of joint differential privacy, recently introduced by Naor et al. [2023], and generalize it towards handling online processes in which existing privacy definitions seem too restrictive. We study basic properties of this definition and demonstrate that it satisfies (suitable variants) of group privacy, composition, and post processing.
In order to demonstrate the advantages of this privacy definition compared to traditional forms of differential privacy, we consider the basic setting of online classification. We show that any (possibly non-private) learning rule can be effectively transformed to a private learning rule with only a polynomial overhead in the mistake bound. This demonstrates a stark difference with traditional forms of differential privacy, such as the one studied by Golowich and Livni [2021], where only a double exponential overhead in the mistake bound is known (via an information theoretic upper bound).
View details
Preview abstract
We introduce the concurrent shuffle model of differential privacy. In this model we have multiple concurrent shufflers permuting messages from different, possibly overlapping, batches of users. Similarly to the standard (single) shuffle model, the privacy requirement is that the concatenation of all shuffled messages should be differentially private. We study the private continual summation problem (a.k.a. the counter problem) and show that
the concurrent shuffle model allows for significantly improved error compared to a standard (single) shuffle model. Specifically, we give a summation algorithm with error $\Tilde{O}(n^{1/(2k+1)})$ with $k$ concurrent shufflers on a sequence of length $n$. Furthermore, we prove that this bound is tight for any $k$, even if the algorithm can choose the sizes of the batches adaptively. For $k=\log n$ shufflers, the resulting error is polylogarithmic, much better than $\Tilde{\Theta}(n^{1/3})$ which we show is the smallest possible with a single shuffler.
We use our online summation algorithm to get algorithms with improved regret bounds for the contextual linear bandit problem. In particular we get optimal $\Tilde{O}(\sqrt{n})$ regret with $k= \Tilde{\Omega}(\log n)$ concurrent shufflers.
View details
Preview abstract
We present efficient differentially private algorithms for learning unions of polygons in the plane (which are not necessarily convex). Our algorithms are $(\alpha,\beta)$--probably approximately correct and $(\varepsilon,\delta)$--differentially private using a sample of size $\tilde{O}\left(\frac{1}{\alpha\varepsilon}k\log d\right)$, where the domain is $[d]\times[d]$ and $k$ is the number of edges in the union of polygons. Our algorithms are obtained by designing a private variant of the classical (nonprivate) learner for conjunctions using the greedy algorithm for set cover.
View details
Preview abstract
Traffic splitting is a required functionality in networks, for example for load balancing over multiple paths or among different servers. The capacities of the servers determine the partition by which traffic should be split. A recent approach implements traffic splitting within the ternary content addressable memory (TCAM), which is often available in switches. It is important to reduce the amount of memory allocated for this task since TCAMs are power consuming and are also required for other tasks such as classification and routing. Previous work showed how to compute the smallest prefix-matching TCAM necessary to implement a given partition exactly. In this paper we solve the more practical case, where at most n prefix-matching TCAM rules are available, restricting the ability to implement exactly the desired partition. We consider the L 1 distance between partitions, which is of interest when overloaded requests are simply dropped, and we want to minimize the total loss. We prove that the Niagara algorithm [1] can be used to find the closest partition in L 1 to the desired partition, that can be realized with n TCAM rules. Moreover, we prove it for arbitrary partitions, with (possibly) non-integer parts.
View details
Adversarially Robust Streaming Algorithms via Differential Privacy
Journal of the ACM, 69(6) (2022), pp. 1-14
Preview abstract
A streaming algorithm is said to be adversarially robust if its accuracy guarantees are maintained even when the data stream is chosen maliciously, by an adaptive adversary. We establish a connection between adversarial robustness of streaming algorithms and the notion of differential privacy. This connection allows us to design new adversarially robust streaming algorithms that outperform the current state-of-the-art constructions for many interesting regimes of parameters.
View details
Preview abstract
Traffic splitting is a required functionality in networks, for example for load balancing over multiple paths or among different servers. The capacities of the servers determine the partition by which traffic should be split. A recent approach implements traffic splitting within the ternary content addressable memory (TCAM), which is often available in switches. It is important to reduce the amount of memory allocated for this task since TCAMs are power consuming and are often also required for other tasks such as classification and routing. Previous work showed how to compute the smallest prefix-matching TCAM necessary to implement a given partition exactly. In this paper we solve the more practical case, where at most n prefix-matching TCAM rules are available, restricting the ability to implement exactly the desired partition. We give simple and efficient algorithms to find n rules that generate a partition closest in L∞ to the desired one. We do the same for a one-sided version of L∞ which equals to the maximum overload on a server and for a relative version of it. We use our algorithms to evaluate how the expected error changes as a function of the number of rules, the number of servers, and the width of the TCAM.
View details