Algorithms and Theory

Google’s mission presents many exciting algorithmic and optimization challenges across different product areas including Search, Ads, Social, and Google Infrastructure. These include optimizing internal systems such as scheduling the machines that power the numerous computations done each day, as well as optimizations that affect core products and users, from online allocation of ads to page-views to automatic management of ad campaigns, and from clustering large-scale graphs to finding best paths in transportation networks. Other than employing new algorithmic ideas to impact millions of users, Google researchers contribute to the state-of-the-art research in these areas by publishing in top conferences and journals.

Recent Publications

Conformal Risk Control
Anastasios N. Angelopoulos
Stephen Bates
Adam Fisch
Lihua Lei
ICLR (2024)
Preview abstract We extend conformal prediction to control the expected value of any monotone loss function. The algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal prediction, the conformal risk control procedure is tight up to an O(1/n) factor. Worked examples from computer vision and natural language processing demonstrate the usage of our algorithm to bound the false negative rate, graph distance, and token-level F1-score. View details
First Passage Percolation with Queried Hints
Kritkorn Karntikoon
Aaron Schild
Yiheng Shen
Ali Sinop
AISTATS (2024)
Preview abstract Optimization problems are ubiquitous throughout the modern world. In many of these applications, the input is inherently noisy and it is expensive to probe all of the noise in the input before solving the relevant optimization problem. In this work, we study how much of that noise needs to be queried in order to obtain an approximately optimal solution to the relevant problem. We focus on the shortest path problem in graphs, where one may think of the noise as coming from real-time traffic. We consider the following model: start with a weighted base graph $G$ and multiply each edge weight by an independently chosen, uniformly random number in $[1,2]$ to obtain a random graph $G'$. This model is called \emph{first passage percolation}. Mathematicians have studied this model extensively when $G$ is a $d$-dimensional grid graph, but the behavior of shortest paths in this model is still poorly understood in general graphs. We make progress in this direction for a class of graphs that resembles real-world road networks. Specifically, we prove that if the geometric realization of $G$ has constant doubling dimension, then for a given $s-t$ pair, we only need to probe the weights on $((\log n) / \epsilon)^{O(1)}$ edges in $G'$ in order to obtain a $(1 + \epsilon)$-approximation to the $s-t$ distance in $G'$. We also demonstrate experimentally that this result is pessimistic -- one can even obtain a short path in $G'$ with a small number of probes to $G'$. View details
Preview abstract Given a training data-set $\mathcal{S}$, and a reference data-set $\mathcal{T}$, we design a simple and efficient algorithm to reweigh the loss function such that the limiting distribution of the neural network weights that result from training on $\mathcal{S}$ approaches the limiting distribution that would have resulted by training on $\mathcal{T}$. Such reweighing can be used to correct for Train-Test distribution shift, when we don't have access to the labels of $\mathcal{T}$. It can also be used to perform (soft) multi-criteria optimization on neural nets, when we have access to the labels of $\mathcal{T}$, but $\mathcal{S}$ and $\mathcal{T}$ have few common points. As a motivating application, we train a graph neural net to recognize small molecule binders to MNK2 (a MAP Kinase, responsible for cell signaling) which are non-binders to MNK1 (a very similar protein), even in the absence of training data common to both data-sets. We are able to tune the reweighing parameters so that overall change in holdout loss is negligible, but the selectivity, i.e., the fraction of top 100 MNK2 binders that are MNK1 non-binders, increases from 54\% to 95\%, as a result of our reweighing. We expect the algorithm to be applicable in other settings as well, since we prove that when the metric entropy of the input data-sets is bounded, our random sampling based greedy algorithm outputs a close to optimal reweighing, i.e., the two invariant distributions of network weights will be provably close in total variation distance. View details
PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses
Adel Javanmard
Proceedings of the 41st International Conference on Machine Learning (2024), pp. 21410-21429
Preview abstract This work studies algorithms for learning from aggregate responses. We focus on the construction of aggregation sets (called \emph{bags} in the literature) for event-level loss functions. We prove for linear regression and generalized linear models (GLMs) that the optimal bagging problem reduces to one-dimensional size-constrained $k$-means clustering. Further, we theoretically quantify the advantage of using curated bags over random bags. We propose the \texttt{PriorBoost} algorithm, which iteratively forms increasingly homogenous bags with respect to (unseen) individual responses to improve model quality. We also explore label differential privacy for aggregate learning, and provide extensive experiments that demonstrate that \PriorBoost regularly achieves optimal quality, in contrast to non-adaptive algorithms for aggregate learning. View details
Preview abstract Online navigation platforms are well optimized to solve for the standard objective of minimizing the travel time and typically require precomputation-based architectures (such as Contraction Hierarchies and the Customizable Route Planning) to do so in a fast manner. The reason for this dependence is the size of the graph that represents the road network, which is large. The need to go beyond minimizing the travel time and introduce various types of customizations has led to approaches that rely on alternative route computation or, more generally, small subgraph extraction. On a small subgraph, one is able to run computationally expensive algorithms at query time and compute optimal solutions for multiple routing problems. In this framework, it is critical for the subgraph to a) be small and b) include (near) optimal routes for a collection of customizations. This is precisely the setting that we study in this work. We design algorithms that extract a subgraph connecting designated terminals with the objective to minimize the subgraph's size and the constraint to include near optimal routes for a set of predefined cost functions. We provide theoretical guarantees for our algorithms and evaluate them empirically using real world road networks. View details
Preview abstract Algorithms for the computation of alternative routes in road networks power many geographic navigation systems. A good set of alternative routes offers meaningful options to the user of the system and can support applications such as routing that is robust to failures (e.g., road closures, extreme traffic congestion, etc.) and routing with diverse preferences and objective functions. Algorithmic techniques for alternative route computation include the penalty method, via-node type algorithms (which deploy bidirectional search and finding plateaus), and, more recently, electrical-circuit based algorithms. In this work we focus on the practically important family of via-node type algorithms and we aim to produce high quality alternative routes for road netowrks. We study alternative route computation in the presence of a fast routing infrastructure that relies on hierarchical routing (namely, CRP). We propose new approaches that rely on deep learning methods. Our training methodology utilizes the hierarchical partition of the graph and builds models to predict which boundary road segments in the partition should be crossed by the alternative routes. We describe our methods in detail and evaluate them against the previously studied architectures, as well as against a stronger baseline that we define in this work, showing improvements in quality in the road networks of Seattle, Paris, and Bangalore. View details