Machine Intelligence

Google is at the forefront of innovation in Machine Intelligence, with active research exploring virtually all aspects of machine learning, including deep learning and more classical algorithms. Exploring theory as well as application, much of our work on language, speech, translation, visual processing, ranking and prediction relies on Machine Intelligence. In all of those tasks and many others, we gather large volumes of direct or indirect evidence of relationships of interest, applying learning algorithms to understand and generalize.

Machine Intelligence at Google raises deep scientific and engineering challenges, allowing us to contribute to the broader academic research community through technical talks and publications in major conferences and journals. Contrary to much of current theory and practice, the statistics of the data we observe shifts rapidly, the features of interest change as well, and the volume of data often requires enormous computation capacity. When learning systems are placed at the core of interactive services in a fast changing and sometimes adversarial environment, combinations of techniques including deep learning and statistical models need to be combined with ideas from control and game theory.

Recent Publications

InstructPipe: Generating Visual Blocks Pipelines with Human Instructions and LLMs
Jing Jin
Xiuxiu Yuan
Jun Jiang
Jingtao Zhou
Yiyi Huang
Zheng Xu
Kristen Wright
Jason Mayes
Mark Sherwood
Johnny Lee
Alex Olwal
Ram Iyengar
Na Li
Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI), ACM, pp. 23
Preview abstract Visual programming has the potential of providing novice programmers with a low-code experience to build customized processing pipelines. Existing systems typically require users to build pipelines from scratch, implying that novice users are expected to set up and link appropriate nodes from a blank workspace. In this paper, we introduce InstructPipe, an AI assistant for prototyping machine learning (ML) pipelines with text instructions. We contribute two large language model (LLM) modules and a code interpreter as part of our framework. The LLM modules generate pseudocode for a target pipeline, and the interpreter renders the pipeline in the node-graph editor for further human-AI collaboration. Both technical and user evaluation (N=16) shows that InstructPipe empowers users to streamline their ML pipeline workflow, reduce their learning curve, and leverage open-ended commands to spark innovative ideas. View details
Multimodal Web Navigation with Instruction-Finetuned Foundation Models
Hiroki Furuta
Ofir Nachum
Yutaka Matsuo
Aleksandra Faust
Shane Gu
Izzeddin Gur
International Conference on Learning Representations (ICLR) (2024)
Preview abstract The progress of autonomous web navigation has been hindered by the dependence on billions of exploratory interactions via online reinforcement learning, and domain-specific model designs that make it difficult to leverage generalization from rich out-of-domain data. In this work, we study data-driven offline training for web agents with vision-language foundation models. We propose an instruction-following multimodal agent, WebGUM, that observes both webpage screenshots and HTML pages and outputs web navigation actions, such as click and type. WebGUM is trained by jointly finetuning an instruction-finetuned language model and a vision encoder with temporal and local perception on a large corpus of demonstrations. We empirically demonstrate this recipe improves the agent's ability of grounded multimodal perception, HTML comprehension, and multi-step reasoning, outperforming prior works by a significant margin. On the MiniWoB, we improve over the previous best offline methods by more than 45.8%, even outperforming online-finetuned SoTA, humans, and GPT-4-based agent. On the WebShop benchmark, our 3-billion-parameter model achieves superior performance to the existing SoTA, PaLM-540B. Furthermore, WebGUM exhibits strong positive transfer to the real-world planning tasks on the Mind2Web. We also collect 347K high-quality demonstrations using our trained models, 38 times larger than prior work, and make them available to promote future research in this direction. View details
Multimodal Modeling for Spoken Language Identification
Shikhar Bharadwaj
Ankur Bapna
Sriram (Sri) Ganapathy
Vera Axelrod
Sid Dalmia
Wei Han
Yu Zhang
Sandy Ritchie
Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024) (2024)
Preview abstract Spoken language identification refers to the task of automatically predicting the spoken language in a given utterance. Conventionally, it is modeled as a speech-based language identification task. Prior techniques have been constrained to a single modality; however in the case of video data there is a wealth of other metadata that may be beneficial for this task. In this work, we propose MuSeLI, a Multimodal Spoken Language Identification method, which delves into the use of various metadata sources to enhance language identification. Our study reveals that metadata such as video title, description and geographic location provide substantial information to identify the spoken language of the multimedia recording. We conduct experiments using two diverse public datasets of YouTube videos, and obtain state-of-the-art results on the language identification task. We additionally conduct an ablation study that describes the distinct contribution of each modality for language recognition. View details
Conformal Risk Control
Anastasios N. Angelopoulos
Stephen Bates
Adam Fisch
Lihua Lei
ICLR (2024)
Preview abstract We extend conformal prediction to control the expected value of any monotone loss function. The algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal prediction, the conformal risk control procedure is tight up to an O(1/n) factor. Worked examples from computer vision and natural language processing demonstrate the usage of our algorithm to bound the false negative rate, graph distance, and token-level F1-score. View details
Creative ML Assemblages: The Interactive Politics of People, Processes, and Products
Ramya Malur Srinivasan
Katharina Burgdorf
Jennifer Lena
ACM Conference on Computer Supported Cooperative Work and Social Computing (2024) (to appear)
Preview abstract Creative ML tools are collaborative systems that afford artistic creativity through their myriad interactive relationships. We propose using ``assemblage thinking" to support analyses of creative ML by approaching it as a system in which the elements of people, organizations, culture, practices, and technology constantly influence each other. We model these interactions as ``coordinating elements" that give rise to the social and political characteristics of a particular creative ML context, and call attention to three dynamic elements of creative ML whose interactions provide unique context for the social impact a particular system as: people, creative processes, and products. As creative assemblages are highly contextual, we present these as analytical concepts that computing researchers can adapt to better understand the functioning of a particular system or phenomena and identify intervention points to foster desired change. This paper contributes to theorizing interactions with AI in the context of art, and how these interactions shape the production of algorithmic art. View details
Beyond SOT: Tracking Multiple Generic Objects at Once
Christoph Mayer
Martin Danelljan
Vittorio Ferrari
Luc Van Gool
WACV'24 (2024)
Preview abstract Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video. While the task has received much attention in the last decades, researchers have almost exclusively focused on the single object setting. However multiobject GOT poses its own challenges and is more attractive in real-world applications. We attribute the lack of research interest into this problem to the absence of suitable benchmarks. In this work, we introduce a new largescale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence. Our benchmark allows users to tackle key remaining challenges in GOT, aiming to increase robustness and reduce computation through joint tracking of multiple objects simultaneously. In addition, we propose a transformer-based GOT tracker baseline capable of joint processing of multiple objects through shared computation. Our approach achieves a 4× faster run-time in case of 10 concurrent objects compared to tracking each object independently and outperforms existing single object trackers on our new benchmark. In addition, our approach achieves highly competitive results on single-object GOT datasets, setting a new state of the art on TrackingNet with a success rate AUC of 84.4%. Our benchmark, code, results and trained models are available at https://github.com/visionml/pytracking. View details